Research on integral separation control of warp tension based on fuzzy parameter optimization

2021 ◽  
pp. 1-14
Author(s):  
Yanjun Xiao ◽  
Zhenpeng Zhang ◽  
Zhenhao Liu ◽  
Zonghua Zhang ◽  
Wei Zhou ◽  
...  

In textile machines, the stability of warp tension is one of the decisive factors for the reliability, stability and product quality of weaving process. In order to meet the improving requirement for weaving efficiency and fabric quality, it is proposed that a fuzzy optimization integral separation PID warp tension control scheme based on process sampling to improve the warp tension control level of loom. Aiming at the problems of time-varying, nonlinear and variable coupling in the warp tension control system of loom, the forming mechanism of warp tension is modeled and analyzed, and the sampling scheme of warp tension based on process is proposed. Based on the periodic change of warp tension at macro level and continuous fluctuation at micro level, the integral separation control and fuzzy optimization theory are introduced to optimize the control effect of the control system on the basis of classical PID control algorithm. Finally, the simulation and experiment show that the scheme can improve the tension controls performance and effectively reduce the tension error fluctuation.

2021 ◽  
pp. 004051752110536
Author(s):  
Yanjun Xiao ◽  
Zhenpeng Zhang ◽  
Zhenhao Liu ◽  
Weiling Liu ◽  
Nan Gao ◽  
...  

Traditional proportional–integral–derivative (PID) control performance optimization is an essential method to improve a loom’s warp tension control performance. This work proposes an improved genetic algorithm optimized PID control scheme to overcome the decline in control performance of the traditional PID control algorithm in a loom’s warp tension control system. Through the decoupling analysis of loom motion mechanism, the establishment of warp tension model and the optimization of fitness evaluation mechanism of genetic algorithm can effectively overcome the problems of local optimal solution and algorithm degradation of genetic algorithm. Simulation experiments were carried out with the traditional PID, the integral separation PID, and the genetic PID in warp tension control. The results show the advantage of the genetic-PID algorithm to control warp tension stability. Ultimately, according to the functional characteristics of the loom mechanism, a tension control platform for experimental studies was established. The test results show that the maximum fluctuation range of warp tension is within [−2, +6] at the test speed of 850 rpm, which meets the requirements of long-term stable and reliable control of warp tension under different weaving conditions.


2014 ◽  
Vol 635-637 ◽  
pp. 1294-1298
Author(s):  
Zhen Pan ◽  
Peng Luo ◽  
Zhen Yu Wu

To ensure stability of warp tension during weaving process, the paper presented a warp tension control system which uses two permanent magnet synchronous motor (PMSM) drive let-off and take-up mechanism respectively. Based on analyzing factors influencing warp tension, a warp tension mathematical model was established. The paper proposed a tension adjustment arithmetic based on internal model control (IMC) method. The method has only one adjustable parameter which decides performance of the system. The simulation results show that the warp tension control system based on IMC has a fine effect on tension stability of warp and it is significantly superior to conventional PID control in terms of robustness and immunity.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257629
Author(s):  
Yanjun Xiao ◽  
Linhan Shi ◽  
Wei Zhou ◽  
Feng Wan ◽  
Weiling Liu

At present, the rapier loom has gradually become the mainstream equipment in the manufacturing industry. In order to make the rapier loom realize automated production and further improve the production efficiency of the rapier loom, improve the programmability of the system, and reduce the cost of system maintenance. The thesis developed a rapier loom control system based on embedded soft PLC, and carried out experiments and applications in the field. The contribution and innovation of this paper is to develop a complete low-cost control system, and through a genetic algorithm optimized PID algorithm to complete the more effective control of the loom tension system. The embedded soft PLC system proposed in this paper reduces the overall maintenance cost of the system and improves the programmability of the system. This text carries on the systematic scheme design to the embedded soft PLC from the hardware system and the software system respectively. First, according to the actual requirements, this article designs the overall scheme of the embedded software PLC hardware system with STM32F407ZGT6 as the core. Then this article is based on the embedded soft PLC hardware platform, according to the international standard of industrial control programming, writes the embedded soft PLC low-level driver software. Secondly, this article analyzes the factors that affect the warp tension during the operation of the rapier loom, and proposes the use of genetic algorithm to optimize the warp tension control method of the traditional PID algorithm. Finally, we conducted verification tests and on-site application debugging for the entire set of rapier loom embedded soft PLC control system. We controlled the warp tension as the main experimental object. The results show that this control system effectively improves the control accuracy of the warp tension of the rapier loom and meets the actual needs of industrial applications. The whole system has a good application prospect in the warp tension control of rapier looms.


2019 ◽  
Vol 67 (3) ◽  
pp. 190-196
Author(s):  
Ning Han

Based on a prediction method of the scattered sound pressure, an active control system was proposed in previous work for the three-dimension scattered radiation, where all the relevant simulations and experiments were implemented in three-dimensional free sound field. However, for practical applications, such as the anti-eavesdropping system or the stealth system for submarines, the sound field conditions are usually complex, and the most common case is the one with reflecting surface. It is questionable whether the previous control system is still effective in non-free sound field, or what improvements should be operated to ensure the control effect. In this article, based on the mirror image principle, two methods of calculating the control source strengths are proposed for the scattered radiation control, and numerical simulations with one-channel and multi-channel system are implemented to detect the corresponding control effect. It is seen that the local active control for the scattered radiation is still effective, and the reduction of the sound pressure level as well as the control area is extended with the increasement of the error sensors and control sources.


2015 ◽  
Vol 723 ◽  
pp. 341-344
Author(s):  
Li Juan Zhang ◽  
Jiang Han ◽  
Zhang Ming Li

Research was conducted on the optimal selection of foundation improvement methods in the paper. Based on fuzzy optimization theory, four evaluation criteria such as construction time are used to evaluate the five improvement methods. The relative optimal degree 0.798 of dynamic-static consolidation method is the maximum which shows that the dynamic-static method is the optimal one; relative optimal degree and multi-evaluating criteria are used to evaluate multi-goals in the fuzzy optimization theory which will lead to the high optimal reliability result.


Author(s):  
A.M. POLIAKOV ◽  
P.K. SOPIN ◽  
V.B. LAZAREV ◽  
A.I. RYZHKOV ◽  
M.A. KOLESOVA ◽  
...  

This article presents a transfemoral prosthesis prototype with active control of an artificial knee joint. One of the main criteria used in the design of the prosthesis was to achieve the maximum biological similarity of this device in order to provide optimal conditions conducive to user natural walking. The artificial knee joint, designed on the basis of a polycentric higed mechanism with intersecting links, provides such conditions at the design level, and a three-level hierarchical control system, built on the basis of an intelligent-synergetic concept, at the control level. To recognize user's intentions, the intelligent subsystem uses algorithms for comparing graphic images of user's walking phases by the method of estimating the invariant moments of Hu. After that, prosthesis elements movements are planned in the synergistic subsystem in accordance with the synergistic quality criteria. The algorithms used in the control system are adjusted depending on what type of artificial foot is used in the prosthesis: active, semi-active or passive (purely mechanical). Mathematical modeling of the prosthesis operation shows that the nature of its functioning corresponds to the quality criteria adopted in the design.


2021 ◽  
Vol 25 (4 Part B) ◽  
pp. 2853-2860
Author(s):  
Shaofeng Dong ◽  
Yahai Wang ◽  
Wei Hu ◽  
Guangshan Zhang ◽  
Jinsong Zhan

Due to the poor effect of traditional systems on constant temperature control, the paper proposes to design an embedded continuous temperature control system in a dynamic, intelligent building. In the smart building, the thesis takes the building as the research object and uses the embedded technology to design the overall structure diagram of the system. The thesis aims at the output control module of the thermostat. It uses the Peltier effect to develop the thermocouple closed-loop and drives the semiconductor refrigeration device select. In the software part, the paper establishes a cross-compilation environment, transplants embedded kernels, and sets fuzzy rules for constant temperature control. The validity of the system design is verified through experiments. It can be seen from the experimental results that the system has a better thermostat control effect.


2012 ◽  
Vol 15 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Yong-Ki Yoon ◽  
She-Chan Oh ◽  
June-Young Choi ◽  
Jae-Young Park ◽  
Hai-Won Yang

Sign in / Sign up

Export Citation Format

Share Document