POM-based metal–organic compounds: Assembly, structures and properties

2021 ◽  
pp. 1-18
Author(s):  
Jian Li ◽  
Zhe Liu ◽  
Yue-Yan Liu ◽  
Jie Liu ◽  
Yuan-Yuan Li ◽  
...  

Four POM-based inorganic-organic hybrid compounds, which are {[(Cu·L1’·H2O)·(α-Mo8O26)0.5]·H2O}n (1), {(Cu·L2’·H2O)·(α-Mo8O26)0.5}n (2), {[(Cu·L3’·H2O)·(β-Mo8O26)0.5]·5H2O}n (3), {(Cu·L4’·H2O)·(β-Mo8O26)}n (4)[L1’ = 1,5-bis (4-carboxylpyridine) pentane dibromide, L2’ = 1,7-bis (4-carboxylpyridine) heptane dibromide, L3’ = 1,2-bis [(4-carboxylpyridine) - N-methylene] benzene dibromide, L4’ = 1,4-bis [(4-carboxylpyridine) - N-methylene] benzene dibromide] have been successfully synthesized under hydrothermal conditions by tuning ligands. Compounds 1–4 were characterized by single crystal X-ray diffraction, infrared spectrum (IR), powder X-ray diffraction (PXRD), and thermogravimetric (TG). The transformation of ligands have a momentous effect on the [Mo8O26]4 -  structures of this series. In addition, the adsorption and photocatalytic properties of organic dyes for compounds 1–4 have been investigated.

2013 ◽  
Vol 68 (7) ◽  
pp. 778-788 ◽  
Author(s):  
Xiu-Li Wang ◽  
Na Li ◽  
Ai-Xiang Tian ◽  
Jun Ying ◽  
Guo-Cheng Liu ◽  
...  

Three Keggin-based metal-organic frameworks (MOFs) containing multi-nuclear silver subunits, [Ag7(ptz)5(H2O)2][H2SiMo12O40] (1), [Ag8(ptz)5(H2O)2][AsW12O40] (2) and [Ag7(ptz)5(H2O)][HAsMo12O40] (3) (ptzH=5-(4-pyridyl)-tetrazole), have been synthesized under hydrothermal conditions by changing the inorganic polyanions. The new compounds have been characterized by elemental analyses, TG analyses, IR spectroscopy, and single-crystal X-ray diffraction. In compound 1, the multi-nuclear Ag5(ptz)5 subunits are interconnected to form chains, which are further linked by AgI cations to construct a 3D MOF with large channels. Pairs of SiMo12O404- polyanions reside in the channels as penta-dentate inorganic ligands. In 2, six AgI cations link five ptz- anions to construct a hexa-nuclear subunit [Ag6(ptz)5]+, which is interconnected to form chains. These chains are further linked by AgI cations to construct a 3D MOF, where AsW12O403- polyanions reside as hexa-dentate ligands. Compound 3exhibits a 3D MOF based on Ag5(ptz)5 subunits, in which the hexa-dentate AsMo12O403- polyanions are incorporated. The rigid tetrazole-based ligand ptz- plays an important role in the formation of the multi-nuclear subunits of the title compounds. The electrochemical properties of compound 1and the photocatalytic properties of compounds 1and 3have been investigated.


2019 ◽  
Vol 75 (8) ◽  
pp. 1053-1059 ◽  
Author(s):  
Lin-Lu Qian ◽  
Zhi-Xiang Wang ◽  
Hai-Xin Tian ◽  
Min Li ◽  
Bao-Long Li ◽  
...  

Metal–organic frameworks (MOFs) have attracted much interest in the fields of gas separation and storage, catalysis synthesis, nonlinear optics, sensors, luminescence, magnetism, photocatalysis gradation and crystal engineering because of their diverse properties and intriguing topologies. A Cu–MOF, namely poly[[(μ2-succinato-κ2 O:O′){μ2-tris[4-(1,2,4-triazol-1-yl)phenyl]amine-κ2 N:N′}copper(II)] dihydrate], {[Cu(C4H4O4)(C24H18N10)]·2H2O} n or {[Cu(suc)(ttpa)]·2H2O} n , (I), was synthesized by the hydrothermal method using tris[4-(1,2,4-triazol-1-yl)phenyl]amine (ttpa) and succinate (suc2−), and characterized by IR, powder X-ray diffraction (PXRD), luminescence, optical band gap and valence band X-ray photoelectron spectroscopy (VB XPS). Cu–MOF (I) shows a twofold interpenetrating 4-coordinated three-dimensional CdSO4 topology with point symbol {65·8}. It presents good photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB) under visible-light irradiation. A photocatalytic mechanism was proposed and confirmed.


RSC Advances ◽  
2015 ◽  
Vol 5 (73) ◽  
pp. 59093-59098 ◽  
Author(s):  
Xiao Li ◽  
Liu Yang ◽  
Chao Qin ◽  
Fu-Hong Liu ◽  
Liang Zhao ◽  
...  

Four new polyoxovanadate-based organic–inorganic hybrid materials have been synthesized under hydrothermal conditions through self-assembly. Their thermal stabilities and photocatalytic activities were also investigated.


2013 ◽  
Vol 66 (11) ◽  
pp. 1370 ◽  
Author(s):  
Xiu-Li Wang ◽  
Yun Qu ◽  
Guo-Cheng Liu ◽  
Jing-Jing Huang ◽  
Nai-Li Chen ◽  
...  

Five new coordination polymers, namely [Zn(2-CMSN)(biim-4)] (1), [Co2(2-CMSN)2(biim-4)(H2O)4] (2), [Ni(2-CMSN)(biim-4)0.5(H2O)2] (3), [Cd(2-CMSN)(biim-4)0.5(H2O)2] (4), and [Cd(ADTZ)(biim-4)1.5]·5H2O (5), (2-H2CMSN = 2-carboxymethylsulfanyl nicotinic acid, H2ADTZ = 2,5-(S-acetic acid) dimercapto-1,3,4-thiadiazole, biim-4 = 1,1′-(1,4-butanediyl)bis(imidazole)) have been synthesised under hydrothermal conditions and structurally characterised by single-crystal X-ray diffraction analysis, infrared spectroscopy, elemental analysis, thermogravimetric analysis, and powder X-ray diffraction. Complex 1 shows a 2D undulated sheet, which is constructed from 1D meso-helical [Zn-(biim-4)]n chains and linear [Zn-(2-CMSN)]n chains. Complexes 2–4 exhibit a similar 2D (4,4) grid network constructed from zigzag [M-(2-CMSN)]n chains and linear [M-(biim-4)]n chains (M = CoII, NiII and CdII), which possesses a ‘4+2’ type six-membered ring. Complex 5 displays a 3D architecture derived from 2D Cd-(biim-4) layers and double ADTZ linkers with diamond-type 66 topology. The effects of the central metals and S-containing dicarboxylates on the structures of the title coordination polymers have been discussed. The luminescent properties of complexes 1, 4, and 5 have been studied. Complex 5 exhibits photocatalytic activity for dye degradation under ultraviolet light and good stability towards photocatalysis.


2021 ◽  
Vol 20 (1) ◽  
pp. 69-79
Author(s):  
Wen-Hao Yang ◽  
Ying Pei ◽  
Hao-Yu Du ◽  
Shang-Hao Xiao ◽  
Xiu-Jun Wu ◽  
...  

Two new supramolecular polyoxmetalates were synthesized from 1, 4-bis[4-nitrile-pyridine)-N-methylene]phenyldibromide (L1) and 1, 2-bis[4-nitrile-pyridine)-N-methylene]phenyldibromide (L2) and (NH4)6Mo7–O24·4H2O under hydrothermal conditions. They are named p-[C20H18N2O4][Mo8O26] 0.5·H2O (1) and o-[C20H18N2O4][Mo8O26] ċ 0.5·H2O (2) respectively. The structures have been confirmed through single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra. The adsorption test of compound 1 and compound 2 in organic dyes were carried out. It was found that compound 1 had a good adsorption effect on methylene blue (MB) and rhodamine B (RhB). The adsorption effect of compound 2 on MB is stronger than that of compound 1.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Li Tian ◽  
Zhi Long Ma ◽  
Mengchen Wang ◽  
Jian Yun Shi

Solvothermal reaction of a novel multidentate ligand 2,5-bis-(1,2,4-triazol-1-yl)-terephthalic acid (H2TTPA), with MnCl2 afforded three structurally different coordination polymers with the similar formula [Mn(TTPA)•H2O]n (Mn-(1-3)). Single-crystal X-ray diffraction analyses show that...


2020 ◽  
Vol 76 (5) ◽  
pp. 398-404
Author(s):  
Zhong-Xuan Xu ◽  
Chun-Yan Ou ◽  
Chun-Xue Zhang

Two three-dimensional cobalt-based metal–organic frameworks with 5-(hydroxymethyl)isophthalic acid (H2HIPA), namely poly[[μ2-1,4-bis(2-methyl-1H-imidazol-1-yl)benzene-κ2 N 3:N 3′][μ2-5-(hydroxymethyl)isophthalato-κ2 O 1:O 3]cobalt(II)], [Co(C9H6O5)(C14H14N4)] n (1), and poly[tris[μ2-1,4-bis(1H-imidazol-1-yl)benzene-κ2 N 3:N 3′]bis[μ3-5-(hydroxymethyl)isophthalato-κ2 O 1:O 3:O 5]dicobalt(II)], [Co2(C9H6O5)2(C12H10N4)3] n (2), were synthesized under similar hydrothermal conditions. Single-crystal X-ray diffraction analyses revealed that 5-(hydroxymethyl)isophthalate (HIPA2−) and 1,4-bis(2-methyl-1H-imidazol-1-yl)benzene (1,4-BMIB) are simple linkers connecting cobalt centres to build a fourfold interpenetration dia framework in complex 1. However, complex 2 is a pillared-layer framework with a (3,6)-connected network constructed by 1,4-bis(1H-imidazol-1-yl)benzene (1,4-DIB) linkers, 3-connected HIPA2− ligands and 6-connected CoII centres. The above significant structural differences can be ascribed to the introduction of the different auxiliary N-donor ligands. Moreover, UV–Vis spectroscopy and Mott–Schottky measurements confirmed that complexes 1 and 2 are typical n-type semiconductors.


2020 ◽  
Vol 76 (6) ◽  
pp. 547-556
Author(s):  
Feng Su ◽  
Jinyang Yu ◽  
Chengyong Zhou ◽  
Shaodong Li ◽  
Pengyi Ma ◽  
...  

Two new Zn2+-based metal–organic frameworks (MOFs) based on biphenyl-2,2′,5,5′-tetracarboxylic acid, i.e. H4(o,m-bpta), and N-donor ligands, namely, poly[[(μ4-biphenyl-2,2′,5,5′-tetracarboxylato)bis{[1,3-phenylenebis(methylene)]bis(1H-imidazole)}dizinc(II)] dimethylformamide monosolvate dihydrate], {[Zn2(C16H6O8)(C14H14N4)2]·C3H7NO·2H2O} n or {[Zn2(o,m-bpta)(1,3-bimb)2]·C3H7NO·2H2O} n (1) {1,3-bimb = [1,3-phenylenebis(methylene)]bis(1H-imidazole)}, and poly[[(μ4-biphenyl-2,2′,5,5′-tetracarboxylato)bis{[1,4-phenylenebis(methylene)]bis(1H-imidazole)}dizinc(II)] monohydrate], {[Zn2(C16H6O8)(C14H14N4)2]·H2O} n or {[Zn2(o,m-bpta)(1,4-bimb)2]·H2O} n (2) {1,4-bimb = [1,4-phenylenebis(methylene)]bis(1H-imidazole)}, have been synthesized under solvothermal conditions. The complexes were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction and powder X-ray diffraction analysis. Structurally, the (o,m-bpta)4− ligands are fully deprotonated and combine with Zn2+ ions in μ4-coordination modes. Complex 1 is a (3,4)-connected porous network with honeycomb-like [Zn2(o,m-bpta)] n sheets formed by 4-connected (o,m-bpta)4− ligands. Complex 2 exhibits a (2,4)-connected network formed by 4-connected (o,m-bpta)4− ligands linking Zn2+ ions in left-handed helical chains. The cis-configured 1,3-bimb and 1,4-bimb ligands bridge Zn2+ ions to form multi-membered [Zn2(bimb)2] loops. Optically, the complexes show strong fluorescence and display larger red shifts compared to free H4(o,m-bpta). Complex 2 shows ferroelectric properties due to crystallizing in the C 2v polar point group.


Crystals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 456 ◽  
Author(s):  
Kaimin Wang ◽  
Huaijun Tang ◽  
Donghua Zhang ◽  
Yulu Ma ◽  
Yuna Wang

A novel coordination polymer, {[Cd4(Dccbp)4]·H2O} (1) (Dccbp = 3,5-dicarboxy-1-(3-carboxybenzyl)pyridin-1-ium) was synthesized under hydrothermal conditions by a zwitterionic organic ligand and characterized by single crystal X-ray diffraction, infrared spectrum (IR), thermogravimetric analysis (TG), powder X-ray diffraction (PXRD) and luminescence. Complex 1 with a pyridine cation basic skeleton has the potential to serve as the first case of a luminescent material based on the zwitterionic type of organic ligand for selective, sensitive, and recyclable sensing of 2,4,6-trinitrophenol in the aqueous phase.


2017 ◽  
Vol 72 (2) ◽  
pp. 107-113 ◽  
Author(s):  
Sheng-Chun Chen ◽  
Feng Tian ◽  
Ming-Yang He ◽  
Qun Chen

AbstractTwo isostructural fluorinated metal-organic frameworks, formulated as [M2(Fbix)(1,4-NDC)2]n (M=Cd for 1 and Mn for 2), were synthesized by employing 1,4-naphthalenedicarboxylic acid (1,4-H2NDC) and the flexible fluorinated ligand 2,3,5,6-tetrafluoro-1,4-bis(imidazole-1-yl-methyl)benzene (Fbix) under hydrothermal conditions. Their structures were determined by single-crystal X-ray diffraction and further characterized by infrared spectroscopy, powder X-ray diffraction, and thermogravimetric analyses. Structure analyses have revealed that compounds 1 and 2 show an unusual hex net based on infinite rod-shaped secondary building units. The solid-state fluorescence spectra of 1 and 2 were measured and indicate a ligand-based emission for both complexes.


Sign in / Sign up

Export Citation Format

Share Document