Energy trading and control of islanded DC microgrid using multi-agent systems

2021 ◽  
Vol 17 (2) ◽  
pp. 113-128
Author(s):  
Diana Rwegasira ◽  
Imed Ben Dhaou ◽  
Masoumeh Ebrahimi ◽  
Anders Hallén ◽  
Nerey Mvungi ◽  
...  

The energy sector is experiencing a revolution that is fuelled by a multitude of factors. Among them are the aging grid system, the need for cleaner energy and the increasing demands on energy sector. The demand-response program is an advanced feature in smart grid that strives to match suppliers to their demands using price-based and incentive programs. The objective of the work is to analyse the performance of the load shedding technique using dynamic pricing algorithm. The system was designed using multi-agent system (MAS) for a DC microgrid capable of real-time monitoring and controlling of power using price-based demand-response program. As a proof of concept, the system was implemented using intelligent physical agents, Java Agent Development Framework (JADE), and agent simulation platform (REPAST) with two residential houses (non-critical loads) and one hospital (critical load). The architecture has been implemented using embedded devices, relays, and sensors to control the operations of load shedding and energy trading in residential areas that have no access to electricity. The measured results show that the system can shed the load with the latency of less than 600 ms, and energy cost saving with an individual houses by 80% of the total cost with 2USD per day. The outcome of the studies demonstrates the effectiveness of the proposed multi-agent approach for real-time operation of a microgrid and the implementation of demand-response program.

Author(s):  
Diana Severine Rwegasira ◽  
Imed Saad Ben Dhaou ◽  
Aron Kondoro ◽  
Anastasia Anagnostou ◽  
Amleset Kelati ◽  
...  

This article describes a framework for load shedding techniques using dynamic pricing and multi-agent system. The islanded microgrid uses solar panels and battery energy management system as a source of energy to serve remote communities who have no access to the grid with a randomized type of power in terms of individual load. The generated framework includes modeling of solar panels, battery storage and loads to optimize the energy usage and reduce the electricity bills. In this work, the loads are classified as critical and non-critical. The agents are designed in a decentralized manner, which includes solar agent, storage agent and load agent. The load shedding experiment of the framework is mapped with the manual operation done at Kisiju village, Pwani, Tanzania. Experiment results show that the use of pricing factor as a demand response makes the microgrid sustainable as it manages to control and monitor its supply and demand, hence, the load being capable of shedding its own appliances when the power supplied is not enough.


2022 ◽  
pp. 700-720
Author(s):  
Diana Severine Rwegasira ◽  
Imed Saad Ben Dhaou ◽  
Aron Kondoro ◽  
Anastasia Anagnostou ◽  
Amleset Kelati ◽  
...  

This article describes a framework for load shedding techniques using dynamic pricing and multi-agent system. The islanded microgrid uses solar panels and battery energy management system as a source of energy to serve remote communities who have no access to the grid with a randomized type of power in terms of individual load. The generated framework includes modeling of solar panels, battery storage and loads to optimize the energy usage and reduce the electricity bills. In this work, the loads are classified as critical and non-critical. The agents are designed in a decentralized manner, which includes solar agent, storage agent and load agent. The load shedding experiment of the framework is mapped with the manual operation done at Kisiju village, Pwani, Tanzania. Experiment results show that the use of pricing factor as a demand response makes the microgrid sustainable as it manages to control and monitor its supply and demand, hence, the load being capable of shedding its own appliances when the power supplied is not enough.


Author(s):  
Diana Rwegasira ◽  
Imed Ben Dhaou ◽  
Anastasia Anagnostou ◽  
Aron Kondoro ◽  
Naiman Shililiandumi ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4597
Author(s):  
Zi-Xuan Yu ◽  
Meng-Shi Li ◽  
Yi-Peng Xu ◽  
Sheraz Aslam ◽  
Yuan-Kang Li

The optimal planning of grid-connected microgrids (MGs) has been extensively studied in recent years. While most of the previous studies have used fixed or time-of-use (TOU) prices for the optimal sizing of MGs, this work introduces real-time pricing (RTP) for implementing a demand response (DR) program according to the national grid prices of Iran. In addition to the long-term planning of MG, the day-ahead operation of MG is also analyzed to get a better understanding of the DR program for daily electricity dispatch. For this purpose, four different days corresponding to the four seasons are selected for further analysis. In addition, various impacts of the proposed DR program on the MG planning results, including sizing and best configuration, net present cost (NPC) and cost of energy (COE), and emission generation by the utility grid, are investigated. The optimization results show that the implementation of the DR program has a positive impact on the technical, economic, and environmental aspects of MG. The NPC and COE are reduced by about USD 3700 and USD 0.0025/kWh, respectively. The component size is also reduced, resulting in a reduction in the initial cost. Carbon emissions are also reduced by 185 kg/year.


2020 ◽  
Vol 10 (5) ◽  
pp. 1751 ◽  
Author(s):  
Wonsuk Ko ◽  
Hamsakutty Vettikalladi ◽  
Seung-Ho Song ◽  
Hyeong-Jin Choi

In this paper, we show the development of a demand-side management solution (DSMS) for demand response (DR) aggregator and actual demand response operation cases in South Korea. To show an experience, Korea’s demand response market outline, functions of DSMS, real contracted capacity, and payment between consumer and load aggregator and DR operation cases are revealed. The DSMS computes the customer baseline load (CBL), relative root mean squared error (RRMSE), and payments of the customers in real time. The case of 10 MW contracted customers shows 108.03% delivery rate and a benefit of 854,900,394 KRW for two years. The results illustrate that an integrated demand-side management solution contributes by participating in a DR market and gives a benefit and satisfaction to the consumer.


2017 ◽  
Vol 2 (2) ◽  
pp. 58
Author(s):  
Muhammad Babar ◽  
J. Grela ◽  
A. Ozadowicz ◽  
P.H. Nguyen ◽  
Z. Hanzelka ◽  
...  

Transactive based control mechanism (TCM) needs the IoT environment to fully explore flexibility potential from the end-users to offer to involved actors of the smart energy system. On the other hand, many IoT based energy management systems are already available to a market. This paper presents an ap-proach to connect the current demand-driven (top-down) energy management system (EMS) with a market-driven (bottom-up) demand response program. To this end, this paper considers multi-agent system (MAS) to realize the approach and introduces the concept and standardize design of Agilometer. It is described as an elemental agent of the approach. Proposed by authors Agilometer consists of three different functional blocks, which are formulated as an IoT platform according to the LonWorks standard. Moreover, the paper also performs an evaluation study in order to validate the proposed concept and design.


Author(s):  
Brijendra Pratap Singh ◽  
M M Gore

The objective of this chapter is to elucidate on microgrid technologies, a comparison of direct current (DC) microgrid technology and alternating current (AC) microgrid technology, the role of the information and communication technology, demand response programs, and the evolution of Industry 4.0 in detail. The microgrid is a cyber-physical system. ICT is used for computing control algorithms and sending control information to actuators for physical processes. In a cyber-physical system, the physical processes, which are governed by the laws of physics, are controlled by computers. The computers are used for computing or executing the algorithms (i.e., the control logic) and the result is sent to the actuators in the form of control signal for actual control. In a microgrid, a consumer can act as a producer also, which is termed as the prosumer. This chapter explains the maximum power point tracking algorithm, software-defined battery, the operation of parallel converters, the working of prosumer, the demand response program, communication technologies, and the (industrial) Internet of Things.


Sign in / Sign up

Export Citation Format

Share Document