scholarly journals Implementation of Response Surface Methodology for Enhanced Production of Endoglucanase by Thermophilic Aspergillus Fumigatus

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Ansar Ahmed Abbasi ◽  
Raja Tahir Mahmood ◽  
Sufia Tazeen ◽  
Muhammad Javaid Asad ◽  
Mudassar Zafar Zafar ◽  
...  

Enzymes are biocatalysts which play key roles in the body of living organisms. Cellulose is major source of plant biomass. Its β-1,4-glucosidic bonds  are hydrolyzed by cellulases. These cellulases can be produced by a variety of microorganisms including fungi, bacteria and actinomycetes which are used today for the industrial applications. The current study was aimed to optimize the cultural conditions for maximum production of endoglucanase by Aspergillus fumigatus through solid state fermentation of sugarcane bagasse. Response Surface Methodology (RSM) was employed under Central Composite Design (CCD) for the optimization of growth including pH, temperature, time period & inoculum size and nutritional parameters including glucose, fructose and (NH₄)₂SO₄. The effect of different metal ions on endoglucanase production was also monitored. It was partially purified by (NH₄)₂SO₄ precipitation and gel filtration chromatography. Finally, edogucanase was characterized for optimum pH, temperature and determination of kinetic parameters. Maximum enzyme activity was found as 0.9 IU/mL/min in the presence of 6 g substrate, 3.5 mL inoculum, 4.5 pH, 40 °C temperature at incubation time of 84 hrs. After addition of carbon and nitrogen sources enzyme activity increased to 1.4 IU/mL/min. It was further increased to 1.56 IU/mL/min with 0.42% of CaCl2. Maximum purification was achieved at 50% saturation by ammonium sulphate (NH₄)₂SO₄. Optimum temperature and pH were 40 °C and 5 respectively, whereas the values for Km and Vmax were 5.37 mM and 696 uM/mL/min., respectively. These findings suggested that endoglucanase by Aspergillus fumigatus could be suitable for various industries. Copyright (c) The Authors

2019 ◽  
pp. 1206-1220
Author(s):  
Reem W. Yonis ◽  
Khalid Jaber Kadhum Luti ◽  
Ghazi M Aziz

In this study, the optimum conditions for chitin deacetylase (CDA) production by Aspergillus flavus F1 in solid-state fermentation were investigated via two optimization strategies: classical optimization based on the method of one factor at a time and statistical optimization using response surface methodology. The result of classical optimization showed that corn supplemented with 2% chitin moisturized with mineral salts solution at pH=7 and five days of incubation time were the optimum conditions for increasing CDA production with approximately yield of 219.5 U/g solid substrate. Furthermore, pH, moisture level and inoculum size were systemically evaluated to improve CDA production based on a central composite design using the Design expert 7 software. Based on the enhanced regression model, a maximum predicted CDA enzyme production of 283.8 U/g could be obtained with pH 8, moisture level 1:1 (w/v) and inoculum size 3 ml/10g solid substrate, which contain 1×106 spore/ml. The verification of optimization results and determine accuracy of model showed that the actual response of CDA was 312 U/g, which approximately closed to predicted value 283.89 U/g. The crude extract of CDA was concentrated by sucrose. The results showed that 61% of CDA enzyme was yielded with a purification fold of 1.1 In addition. Then CDA was purified partially by gel filtration chromatography after concentration by sucrose with total enzyme activity and specific activity of 1476 U and 12300 (U/mg protein) respectively. Furthermore, the produced CDA enzyme showed maximum activity in pH ranged from (6-8); in which enzyme activity was 69 U/ ml. however; the enzyme stability has a wide range in acidic and alkaline pH. In addition, the enzyme was maintained its activity at temperatures from 30 to 55C˚. Whereas, the activity was declined in temperature up to 55Cº with a minimum activity (8 U/ml) observed at 80Cº.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Praveen Kumar Siddalingappa Virupakshappa ◽  
Manjunatha Bukkambudhi Krishnaswamy ◽  
Gaurav Mishra ◽  
Mohammed Ameenuddin Mehkri

The present paper describes the process optimization study for crude oil degradation which is a continuation of our earlier work on hydrocarbon degradation study of the isolate Stenotrophomonas rhizophila (PM-1) with GenBank accession number KX082814. Response Surface Methodology with Box-Behnken Design was used to optimize the process wherein temperature, pH, salinity, and inoculum size (at three levels) were used as independent variables and Total Petroleum Hydrocarbon, Biological Oxygen Demand, and Chemical Oxygen Demand of crude oil and PAHs as dependent variables (response). The statistical analysis, via ANOVA, showed coefficient of determination R2 as 0.7678 with statistically significant P value 0.0163 fitting in second-order quadratic regression model for crude oil removal. The predicted optimum parameters, namely, temperature, pH, salinity, and inoculum size, were found to be 32.5°C, 9, 12.5, and 12.5 mL, respectively. At this optimum condition, the observed and predicted PAHs and crude oil removal were found to be 71.82% and 79.53% in validation experiments, respectively. The % TPH results correlate with GC/MS studies, BOD, COD, and TPC. The validation of numerical optimization was done through GC/MS studies and   % removal of crude oil.


Author(s):  
Zheng rong Xia ◽  
Yong chen Pei ◽  
Dong xu Wang ◽  
Shun Wang

Although permanent magnet couplings (PMCs) have been under research for many years and have found successful industrial applications, this is still a technology under development. Accurate parameter determination is of significance for performance analysis and critical decisions on PMC design. However, the determination can often lead to an unacceptable increase in computation, especially when finite elements (FE) are used. The study aims to develop an FE model that is used for the structural design of a standard-disc type PMC for optimal torque. For the quick and accurate design, an integration optimal solution of the response surface methodology (RSM) and the Taguchi’s method was proposed. To verify the simulation, a series of experimental investigations were conducted on a self-developed testing platform. Furthermore, for a minimum set of FE analyses (FEA), a quantitative indicator called contribution rate, which can reflect effect level of structure parameters on the torque, was given based on the Taguchi method. Apart from this, the orthogonal matrix was used for the reduction of the FE calculation. Based on the contribution rate, the response surface methodology was adopted for the optimal torque determination with no increase in the PM volume. According to the optimization results, a fitting formula, which considers the contribution rates of the optimization variables, was presented. The results suggest that the FE simulations agree very well with the experiments, and the fitting formula can be used in the PMC design.


Sign in / Sign up

Export Citation Format

Share Document