scholarly journals Structural characterization of hydrogen bonding for antipyrine derivatives: Single-crystal X-ray diffraction and theoretical studies

Author(s):  
N. S. Rukk ◽  
R. S. Shamsiev ◽  
D. V. Albov ◽  
S. N. Mudretsova

Objectives. The paper is devoted to the crystal structure characterization of 5-methyl-2-phenyl4H-pyrazol-3-one (compound I) and 2-(4-chlorophenyl)-5-methyl-4H-pyrazol-3-one (compound II).Methods. Single-crystal X-ray diffraction studies and theoretical calculations: Density functional theory and quantum theory of atoms in molecules.Results. In the solid state, the crystal structure of compound I is characterized by the alternation of OH and NH tautomers connected via O–H---O and N–H---N hydrogen bonds. For compound II, the existence of chains built from the NH monomers via hydrogen bonding can be explained by the peculiarities of cooperative effects. In the framework of quantum theory of atoms in molecules, the following topological characteristics are calculated for all dimers: electron density, Laplacian of electron density, density of kinetic, potential, and total energy in the critical point of the intermolecular hydrogen bond. It is concluded that the hydrogen bond in dimers 1–4, 7 (compound I), and 8–11 (compound II) can be assigned to the intermediate (between covalent and dispersion types) interaction owing to hydrogen bond formation with the participation of electronegative oxygen- (and/or nitrogen-) atoms, whereas H-bond in dimers 5 and 6 (compound I) can be attributed to the dispersion one (no hydrogen bond formation or weak H-bond formation), and it represents the weak interaction, being in agreement with length for intermolecular hydrogen bond in dimers. The electron density and total energy density values demonstrate that the strongest intermolecular H-bonds take place in dimers 1 (OH---O), 4 (OH---O), 7 (OH---N), 8 (OH---O), 9 (NH---N), and 11 (OH---N). The results obtained for compounds I and II are compared with data for antipyrine (1,2-dihydro-1,5-dimethyl-2-phenyl-3H-pyrazol-3-one; compound III)Conclusions. An important role of intermolecular hydrogen bonding in the crystal packing, molecule association and self-organization via dimer- or more extended species formation has been demonstrated. 

2018 ◽  
Vol 74 (10) ◽  
pp. 1116-1122
Author(s):  
Pheello I. Nkoe ◽  
Hendrik G. Visser ◽  
Chantel Swart ◽  
Alice Brink ◽  
Marietjie Schutte-Smith

The synthesis and characterization of two dinuclear complexes, namelyfac-hexacarbonyl-1κ3C,2κ3C-(pyridine-1κN)[μ-2,2′-sulfanediyldi(ethanethiolato)-1κ2S1,S3:2κ3S1,S2,S3]dirhenium(I), [Re2(C4H8S3)(C5H5N)(CO)6], (1), and tetraethylammoniumfac-tris(μ-2-methoxybenzenethiolato-κ2S:S)bis[tricarbonylrhenium(I)], (C8H20N)[Re2(C7H7OS)3(CO)6], (2), together with two mononuclear complexes, namely (2,2′-bithiophene-5-carboxylic acid-κ2S,S′)bromidotricarbonylrhenium(I), (3), and bromidotricarbonyl(methyl benzo[b]thiophene-2-carboxylate-κ2O,S)rhenium(I), (4), are reported. Crystals of (1) and (2) were characterized by X-ray diffraction. The crystal structure of (1) revealed two Re—S—Re bridges. The thioether S atom only bonds to one of the ReImetal centres, while the geometry of the second ReImetal centre is completed by a pyridine ligand. The structure of (2) is characterized by three S-atom bridges and an Re...Re nonbonding distance of 3.4879 (5) Å, which is shorter than the distance found for (1) [3.7996 (6)/3.7963 (6) Å], but still clearly a nonbonding distance. Complex (1) is stabilized by six intermolecular hydrogen-bond interactions and an O...O interaction, while (2) is stabilized by two intermolecular hydrogen-bond interactions and two O...π interactions.


2000 ◽  
Vol 56 (5) ◽  
pp. 849-856 ◽  
Author(s):  
Clair Bilton ◽  
Frank H. Allen ◽  
Gregory P. Shields ◽  
Judith A. K. Howard

A systematic survey of the Cambridge Structural Database (CSD) has identified all intramolecular hydrogen-bonded ring motifs comprising less than 20 atoms with N and O donors and acceptors. The probabilities of formation Pm of the 50 most common motifs, which chiefly comprise five- and six-membered rings, have been derived by considering the number of intramolecular motifs which could possibly form. The most probable motifs (Pm > 85%) are planar conjugated six-membered rings with a propensity for resonance-assisted hydrogen bonding and these form the shortest contacts, whilst saturated six-membered rings typically have Pm < 10%. The influence of intramolecular-motif formation on intermolecular hydrogen-bond formation has been assessed for a planar conjugated model substructure, showing that a donor-H is considerably less likely to form an intermolecular bond if it forms an intramolecular one. On the other hand, the involvement of a carbonyl acceptor in an intramolecular bond does not significantly affect its ability to act as an intermolecular acceptor and thus carbonyl acceptors display a substantially higher inclination for bifurcation if one hydrogen bond is intramolecular.


1985 ◽  
Vol 63 (2) ◽  
pp. 342-348 ◽  
Author(s):  
W. Kirk Stephenson ◽  
Richard Fuchs

Enthalpies of solution (ΔHs) of 1-octanol and five model compounds (di-n-butyl ether, n-heptyl methyl ether, 1-fluoro-octane, 1-chlorooctane, and n-octane) have been determined in 13 solvents (heptane, cyclohexane, CCl4, 1,1,1-trichloro-ethane, 1,2-dichloroethane, triethylamine, butyl ether, ethyl acetate, DMF, DMSO, benzene, toluene, mesitylene), and combined with heats of vaporization to give enthalpies of transfer from vapor to solvent (ΔH(v → S)). These values have been used to calculate the enthalpy of hydrogen bond formation (ΔHh) of 1-octanol with each solvent, using the pure base (PB), solvation enthalpy (SE), and non-hydrogen-bonding baseline (NHBB) methods. Evidence is presented suggesting that (a) the SE method is susceptible to mismatches of the 1-octanol vs. model polar and dispersion interactions, (b) the PB method is sensitive to polar interaction mismatches, whereas (c) the NHBB method compensates for both polar and dispersion interactions mismatches. The (apparent) ΔHh values determined by the SE and PB methods may be as much as several kcal/mol (nearly 50%) too large, because of the inclusion of other polar and dispersion interactions. The NHBB method is therefore preferred for determining enthalpies of H-bond formation from calorimetric data. However, apparent ΔHh values from the SE and PB methods can be incorporated into total solvatochromic equations using Taft–Kamiet π*, β, and ξ parameters, to provide enthalpies of H-bond formation in good agreement with ΔHh (NHBB).


2019 ◽  
Vol 18 (9) ◽  
pp. 2270-2280 ◽  
Author(s):  
Davide Vanossi ◽  
Monica Caselli ◽  
Giorgia Pavesi ◽  
Chiara Borsari ◽  
Pasquale Linciano ◽  
...  

Intra- vs. intermolecular hydrogen-bond formation and ESIPT in a bioactive flavonoid result in different emission properties and provide a clue for recognizing its binding to target proteins.


1970 ◽  
Vol 48 (14) ◽  
pp. 2197-2203 ◽  
Author(s):  
A. Foldes ◽  
C. Sandorfy

The influence of solvent effects and hydrogen bond formation on the anharmonicity of the NH stretching vibration of simple secondary amides, lactams, anilides, indole, pyrrole, and imidazole have been studied; and the frequencies of the first and second overtones, their half widths and solvent shifts measured. The validity of Buckingham's theory is established in the case of inert solvents; whereas the second order perturbation treatments are shown to be inapplicable to the case of hydrogen bonding solvents. All NH stretching modes seem to exhibit the same anharmonic behavior which is very different from that of OH vibrations.


1985 ◽  
Vol 63 (1) ◽  
pp. 40-45 ◽  
Author(s):  
Lucie Wilson ◽  
R. Bicca de Alencastro ◽  
C. Sandorfy

The anesthetic potency of n-alcohols exhibits a somewhat irregular dependence on the length of the hydrocarbon chain. An attempt has therefore been made to ascertain if this is related to the relative tendency for hydrogen bond formation by these alcohols. No such relationship was found. The result was rather that the degree of association by hydrogen bond formation of dissolved alcohols appears to be independent of the chain length, that is of the extent of other interactions that exist in these solutions.


Sign in / Sign up

Export Citation Format

Share Document