scholarly journals Transmission coefficients of superconducting particles

Author(s):  
A. V. Matasov ◽  
A. A. Dovmalov ◽  
D. M. Babyshkina

Objectives. There is no general theory of superconductivity capable of fully describing this phenomenon, which imposes its own difficulties in the search for new superconducting materials, as well as in the study of their properties. In particular, the electrodynamics of a superconducting system is unexplored. With the aim of a possible further description of the electrodynamics of superconductors, the temperature dependences of the energy parameters of a Cooper pair in the potential field of Abrikosov vortex were analyzed.Methods. The basis for the obtained results of the work was the consideration of the transmission coefficient for a superconducting particle in the approximation of the Wentzel– Kramers–Brillouin method, as well as the relationship between the critical temperature and the London penetration depth and the coherence length based on the model of plasmon destruction of the superconducting state.Results. The dependences of the lifetime of a particle in a potential well, penetration depth, frequency of impacts of a particle against a potential barrier, blurring of the energy level, transmission coefficient, and potential and kinetic energy of a particle on temperature were obtained. The characteristic values of these parameters were obtained at absolute zero for various cuprate, organic, and other superconducting materials. The dependences of the critical electric potential on temperature, as well as the London penetration depth, coherence length, and electric potential on the transmission coefficient at different temperatures were obtained. The form of the dependences qualitatively corresponds to the experimental data.Conclusions. The results obtained can be used to construct a general theory of superconductivity, describe the electrodynamics of a superconducting state, and develop new superconductors with higher critical currents. 

2015 ◽  
Author(s):  
Francesca Cuteri ◽  
Paolo Cea ◽  
Leonardo Cosmai ◽  
Alessandro Papa

2014 ◽  
Vol 89 (9) ◽  
Author(s):  
Paolo Cea ◽  
Leonardo Cosmai ◽  
Francesca Cuteri ◽  
Alessandro Papa

The theory developed in II is extended to cover the case of a superconductor, and a formula is derived relating the r. f. resistivity to the superconducting penetration depth and other parameters of the metal. It is shown how the penetration depth may be deduced directly from measurements of the skin reactance, and a method of measuring reactance is described, based essentially on the variation of the velocity of propagation along a transmission line due to the reactance of the conductors. For technical reasons it is not convenient to measure the reactance absolutely, but a simple extension of the technique described in I enables the change in reactance to be accurately measured when superconductivity is destroyed by a magnetic field. The method has been applied to mercury and tin. In the former case the results are in agreement with Shoenberg’s direct measurements, and confirm that the penetration depth at 0° K is of the order of 7 x 10 –6 cm. The theory developed at the beginning of the paper is used to deduce the variation of penetration depth with temperature from the resistivity measurements of I, and it is shown that agreement with other determinations and with the reactance measurements is fairly good, but not perfect. Some of the assumptions used in developing the theory are critically discussed, and a qualitative account is given to show how Heisenberg’s theory of superconductivity offers an explanation of some of the salient features of superconductivity and inparticular indicates the relation between superconducting and normal electrons.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Tsadik Kidanemariam ◽  
Gebregziabher Kahsay

This research work focuses on the theoretical investigation of the upper critical magnetic field,HC2; Ginzburg-Landau coherence length,ξGL(T); and Ginzburg-Landau penetration depth,λGL(T), for the two-band iron based superconductorsBaFe2(As1-xPx)2,NdO1-xFxFeAs, and LiFeAs. By employing the phenomenological Ginzburg-Landau (GL) equation for the two-band superconductorsBaFe2(As1-xPx)2,NdO1-xFxFeAs, and LiFeAs, we obtained expressions for the upper critical magnetic field,HC2; GL coherence length,ξGL; and GL penetration depth,λGL, as a function of temperature and the angular dependency of upper critical magnetic field. By using the experimental values in the obtained expressions, phase diagrams of the upper critical magnetic field parallel,HC2∥c, and perpendicular,HC2⊥c, to the symmetry axis (c-direction) versus temperature are plotted. We also plotted the phase diagrams of the upper critical magnetic field,HC2versus the angleθ. Similarly, the phase diagrams of the GL coherence length,ξGL, and GL penetration depth,λGL, parallel and perpendicular to the symmetry axis versus temperature are drawn for the superconductors mentioned above. Our findings are in agreement with experimental observations.


1992 ◽  
Vol 247 ◽  
Author(s):  
T. W. Ebbesen ◽  
K. Tanigaki ◽  
S. Saito ◽  
J. Mizuki ◽  
J. S. Tsai ◽  
...  

ABSTRACTThe surprisingly high Tc for the superconductivity of alkali doped C60 has spurred wide interest in understanding its mechanism [1–7]. We first report the superconductive properties of CsxRbyC60 which has a Tc as high as 33 K when x=2 and y=1 in the feed [4, 5]. SQUID measurements show that in this material the coherence length is 45 A and the penetration depth about 1, 800 A [5]. It has now been proven that the observed increase in the Tc with the size of the alkali dopant is due to the increase in the lattice constant [6]. This is most likely due to the changes in the density of states at the Fermi level. The other important parameter according to BSC theory is the phonon which mediates the electron-electron coupling. In the second part of this paper we present recent results which show that the Tc is indeed strongly influenced by this parameter [7]. The isotope effect is unexpectedly strong on the Tc.


2019 ◽  
Vol 135 (2) ◽  
pp. 196-199
Author(s):  
K.M. Skoczylas ◽  
A.E. Auguścik ◽  
A.P. Durajski

Sign in / Sign up

Export Citation Format

Share Document