scholarly journals A novel сalcium trifluoroacetate structure

Author(s):  
A. A. Vasilyeva ◽  
T. Yu. Glazunova ◽  
D. S. Tereshchenko ◽  
E. Kh. Lermontova

Objectives. The study was devoted to considering the features of the synthesis and crystal structure of calcium trifluoroacetate Ca2(CF3COO)4·8CF3COOH and investigating the products of its thermal behavior.Methods. The compositions of the proposed structural form were characterized by various physicochemical methods (X-ray diffraction, IR spectroscopy), and the products of thermal decomposition were determined under dynamic vacuum conditions.Results. The reaction between calcium carbonate and 99% trifluoroacetic acid yielded a new structural type of calcium trifluoroacetate Ca2(CF3COO)4·8CF3COOH (I) in the form of colorless prismatic crystals unstable air. X-ray diffraction results confirmed the composition I: space group P21, with unit cell parameters: a = 10.0193(5) Å, b = 15.2612(7) Å, c = 16.3342(8) Å, β = 106.106(2)°, V = 2399.6(2) Å3, Z = 2. The structure is molecular, constructed from Ca2(CF3COO)4·8CF3COOH dimers. The end molecules of the trifluoroacetic acid were involved in the formation of intramolecular hydrogen bonds with oxygen atoms of the bidentate bridging anions CF3COO−. There were strongly pronouncedsymmetric and asymmetric absorption bands of COO and CF3-groups in the IR spectrum of the resulting compound in the range of 1200–1800 cm−1. The definite peak of the oscillation of the OH-group at 3683 cm−1 corresponds to the trifluoroacetic acid molecules present in the structure. The broadpeak of the valence oscillations in the range of 3300–3500 cm−1 is caused by the presence of intramolecular hydrogen bonds. Decomposition began at 250°C and 10−2 mm Hg with calcium fluoride CaF2 as the final decomposition product.Conclusions. We obtained a previously undescribed calcium–trifluoroacetic acid complex whose composition can be represented by Ca2(CF3COO)4·8CF3COOH. The crystal island structure is a dimeric molecule where the calcium atoms are bound into dimers by four trifluoroacetate groups. The complex was deposited in the Cambridge Structural Data Bank with a deposit number CCDC 2081186. Although the compound has a molecular structure, thermal decomposition leads to the formation of calcium fluoride characterized by a small particle size, which may further determine its applications.

Author(s):  
A. Whitaker

AbstractThe crystal and molecular structure of C.I. Pigment Red 2, l′-(2,5-dichlorophenyl)azo-2′-hydroxy-3′-phenylamidonaphthalene has been determined by x-ray diffraction techniques. It crystallizes in the monoclinic system with cell parametersThe hydrogen atoms have been found and included but not refined. The final residual is 15.3%. The molecule is probably in the form of the hydrazone tautomer. The intramolecular hydrogen bonds keep most of the molecule approximately planar while it appears that the remainder is held in the same plane due to steric hinderence between the molecules. The molecules are packed in columns with alternate molecules antiparallel and are linked by van der Waals forces.


1986 ◽  
Vol 64 (9) ◽  
pp. 1850-1854 ◽  
Author(s):  
A. Koll ◽  
M. Rospenk ◽  
L. Sobczyk ◽  
T. Glowiak

The crystals of 2-(N,N-diethylamino-N-oxymethyl)-4,6-dichlorophenol chosen as a representative of the Mannich base N-oxides were found to be monoclinic, P21/c space group, with a = 11.729(3), b = 16.232(4), c = 13.689(3) Å, β = 107.37(3)°, and Z = 8. The structure solved by the direct method was refined to R = 0.033 for 3170 independent reflections. Two slightly different molecules denoted as A and B in the unit cell with very short (2.42 and 2.40 Å) OHO intramolecular hydrogen bonds were detected. Both a X-ray diffraction study and the ir and uv spectra indicate a symmetric type of bridge in this compound.


2011 ◽  
Vol 89 (8) ◽  
pp. 971-977
Author(s):  
Danielle M. Chisholm ◽  
Robert McDonald ◽  
J. Scott McIndoe

Methylation of aromatic amino groups is usually straightforward, but the formation of two intramolecular hydrogen bonds in 3,3′-N,N′-bis(amino)-2,2′-bipyridine and (or) the potential for ring methylation prevents the clean tetramethylation of this molecule. Numerous attempts to make 3,3′-N,N′-bis(dimethylamino)-2,2′-bipyridine produced only complex mixtures of variously methylated products, and the only isolated molecule was 3,3′-N,N′-bis(methylamino)-2,2′-bipyridine, for which an X-ray crystal structure was obtained.


1985 ◽  
Vol 38 (3) ◽  
pp. 401 ◽  
Author(s):  
MJ O'Connell ◽  
CG Ramsay ◽  
PJ Steel

The colourless crystalline form of the benzoylpyrazolone (2) has molecules with the NH structure (2c) stabilized by intermolecular hydrogen bonds. At room temperature crystals are monoclinic: P21/c, a 13.508(5), b 9.124(4), c 11.451(3)Ǻ, β 90.80(3)°, Z4; the structure was refined to R 0.059, Rw 0.048. The acetoacetylpyrazolone (3) has the OH structure (3c) with two intramolecular hydrogen bonds. At 193 K crystals are triclinic: Pī , a 7.142(2), b 13.704(8), c 14.699(7)Ǻ, α 117.36(3), β 96.87(3), γ 93.73(3)°, Z 4; the structure was refined to R 0.049, Rw 0.054.


A complex consisting of one molecule of 5-bromouridine ( BUR ) and one molecule of di­methylsulphoxide ( DMSO ) has been prepared in the form of monoclinic crystals. The unit cell parameters are as follows, a = 13⋅65 ± 0⋅01, b = 4.820 ± 0⋅005, c = 12⋅09 ± 0⋅01 Å, β = 91⋅8 ± 0.1°, space group P 2 1 . X-ray diffraction data ( ⋋ = 1⋅5418 Å) for 1389 independent reflexions were collected and the structure was determined from Patterson syntheses which gave the coordinates of the bromine and sulphur atoms. Fourier syntheses followed by least-squares refinement (including anisotropic temperature parameters) reduced the agreement index R to 0⋅067. The bond lengths and angles for each molecule are given, and it is shown that hydrogen bonds are formed between the oxygen atom of the DMSO molecule and the 03' and 05' of the BUR molecules. A comparison is made between the conformation of the BUR molecule in this complex and that of the same molecule in two other structures.


2021 ◽  
Vol 13 (1) ◽  
pp. 47-57
Author(s):  
A.N. Efremov ◽  
◽  
V.V. Sharutin

Pentaphenylantimony and penta-para-tolylantimony react with calixarene [4-t-BuC6H2OH(S-2)]4 (СArH) by way of arene elimination and formation of the [Ph4Sb]+[СAr]- × TolH (1), [p-Tol4Sb]+[CAr]- × H2O (2) ionic products with a yield up to 96%. The compound has been identified by IR spectroscopy and X-ray diffraction analysis. According to the X-ray diffraction data, compounds 1 and 2 are ionic complexes with solvate molecules of toluene (1) and water (2). The cation has a tetrahedral coordination of the antimony atom with aryl ligands at the polyhedron vertices; the anion is represented by the deprotonated form of p-tert-butylthiacalix[4]arene. The three tert-butyl groups, the phenyl ring and solvated toluene in the structure of compound 1, and two tert-butyl fragments in the structure of compound 2 are disordered over two positions. The tetrahedral coordination of antimony atoms in the cations of compounds 1 and 2 is slightly distorted. The CSbC angles deviate from the theoretical value and vary within 106.0(4)−117.7(4)° (1), 105.75(15)−112.84(15)° (2). The average Sb–C bond lengths are 2.101(3) and 2.106(4) Å in structures 1 and 2, respectively. The [СAr]- anion is in the cone conformation, the upper rim of which is represented by the tert-butyl groups in the para-position, while the lower one is represented by hydroxy groups, one of which is deprotonated. The СAr–O– bond length (1.318(4) (1) and 1.326(4) (2) Å) is less than the average value of the СAr–OH bond lengths (1.338(4) (1) and 1.343(4) (2) Å), which indicates increasing multiplicity of the bond and localization of a negative charge on the oxygen atom. Intramolecular hydrogen bonds with the neiboring O atom are observed. The H∙∙∙O distances are 2.16, 1.69, 1.77 Å in 1 and 1.92, 1.79, 1.76 Å in 2. Dihedral angles between opposite phenoxide rings are 60.64° and 87.07° (1) and 83.85° and 80.42° (2), which indicates somewhat less symmetric anion in structure 1 than in structure 2. The formation of the crystal spatial structure is due to the formation of hydrogen bonds between ions with participation of oxygen and sulfur atoms, as well as СН∙∙∙π–interactions, while the ions form chains in the crystal of compound 1, and layers in the crystal of compound 2. Complete tables of atom coordinates, bond lengths and valence angles are deposited at the Cambridge Crystallographic Data Center (No. 1850118 (1); No. 2013220 (2); [email protected] or http://www.ccdc.cam.ac.uk/data_request/cif).


Author(s):  
Elham Abdalrahem Bin Selim ◽  
Mohammed Hadi Al–Douh

Unusual effects of intramolecular hydrogen bonds and dipole interactions are investigated using FTIR, NMR and X-Ray crystallography analyses of some imines. These phenomena affect both FTIR absorptions and chemical shifts.


2007 ◽  
Vol 63 (2) ◽  
pp. 303-308 ◽  
Author(s):  
Andrew Parkin ◽  
Martin Adam ◽  
Richard I. Cooper ◽  
Derek S. Middlemiss ◽  
Chick C. Wilson

A new polymorph of 2,4-dihydroxybenzoic acid is reported. The structure was characterized by multiple-temperature X-ray diffraction and solid-state DFT computations. The material shows a geometric pattern of hydrogen bonding consistent with cooperativity between the intermolecular carboxylic acid dimer and intramolecular hydrogen bonds. The presence of proton disorder within this hydrogen-bond system, which would support such a cooperative model, was not fully ruled out by the initial X-ray studies. However, solid-state calculations on the three possible end-point tautomers indicate that the dominant crystallographically observed configuration is substantially lower in energy than the other tautomers (by at least 9 kJ mol−1), indicating that no disorder should be expected. It is therefore concluded that no disorder is observed either in the intra- or intermolecular hydrogen bonds of the title compound and that the cooperativity between the hydrogen bonds is not present within the temperature range studied.


Sign in / Sign up

Export Citation Format

Share Document