scholarly journals Shaker Flask or Roller Bottle Culture Biosynthesis

2020 ◽  
Author(s):  
Keyword(s):  

2008 ◽  
Vol 6 (1) ◽  
pp. 1 ◽  
Author(s):  
Ryan E Campbell-Anson ◽  
Diane Kentor ◽  
Yi J Wang ◽  
Kathryn M Bushnell ◽  
Yufeng Li ◽  
...  


2021 ◽  
Vol 43 ◽  
pp. 1-7
Author(s):  
Thaila Fernanda Oliveira da Silva ◽  
Cristina Sayuri Yamaguchi ◽  
Susana Tavares Cotrim Ribeiro ◽  
Alexandre da Silva Avincola ◽  
Eduardo Jorge Pilau ◽  
...  


BioTechniques ◽  
2000 ◽  
Vol 29 (6) ◽  
pp. 1207-1209
Author(s):  
L.J. Vigil ◽  
P.B. Danielson ◽  
C. Sollars ◽  
T.M. Yee ◽  
J.C. Fogleman


Author(s):  
F. J. Muzzio ◽  
D. R. Unger ◽  
M. Liu ◽  
J. Bramble ◽  
J. Searles ◽  
...  


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Muhammad Najib Fathi Bin Hassan ◽  
Muhammad Dain Yazid ◽  
Mohd Heikal Mohd Yunus ◽  
Shiplu Roy Chowdhury ◽  
Yogeswaran Lokanathan ◽  
...  

Mesenchymal stem cells (MSCs) are multipotent stem cells with strong immunosuppressive property that renders them an attractive source of cells for cell therapy. MSCs have been studied in multiple clinical trials to treat liver diseases, peripheral nerve damage, graft-versus-host disease, autoimmune diseases, diabetes mellitus, and cardiovascular damage. Millions to hundred millions of MSCs are required per patient depending on the disease, route of administration, frequency of administration, and patient body weight. Multiple large-scale cell expansion strategies have been described in the literature to fetch the cell quantity required for the therapy. In this review, bioprocessing strategies for large-scale expansion of MSCs were systematically reviewed and discussed. The literature search in Medline and Scopus databases identified 26 articles that met the inclusion criteria and were included in this review. These articles described the large-scale expansion of 7 different sources of MSCs using 4 different bioprocessing strategies, i.e., bioreactor, spinner flask, roller bottle, and multilayered flask. The bioreactor, spinner flask, and multilayered flask were more commonly used to upscale the MSCs compared to the roller bottle. Generally, a higher expansion ratio was achieved with the bioreactor and multilayered flask. Importantly, regardless of the bioprocessing strategies, the expanded MSCs were able to maintain its phenotype and potency. In summary, the bioreactor, spinner flask, roller bottle, and multilayered flask can be used for large-scale expansion of MSCs without compromising the cell quality.



1976 ◽  
Vol 2 (3) ◽  
pp. 389-392
Author(s):  
Frederick R. Ball ◽  
George Sanders ◽  
Edward L. Medzon


Author(s):  
Nancy L. Cowger ◽  
Kim C. O'Connor ◽  
Timothy G. Hammond ◽  
Daniel J. Lacks ◽  
Gabriel L. Navar


Elem Sci Anth ◽  
2019 ◽  
Vol 7 ◽  
Author(s):  
Kai Ziervogel ◽  
Samantha B. Joye ◽  
Sara Kleindienst ◽  
Sairah Y. Malkin ◽  
Uta Passow ◽  
...  

Oceanic oil-degrading bacteria produce copious amounts of exopolymeric substances (EPS) that facilitate their access to oil. The fate of EPS in the water column is in part determined by activities of heterotrophic microbes capable of utilizing EPS compounds as carbon and energy sources. To evaluate the potential of natural microbial communities to degrade EPS produced during oil degradation, we measured potential hydrolysis rates of six structurally distinct polysaccharides in two roller bottle experiments, using water from a natural oil seep in the northern Gulf of Mexico. The suite of polysaccharides used to measure the initial step in carbon degradation is indicative of polymers within microbial EPS. The treatments included (i) unamended surface or deep waters (whole water), and water amended with (ii) a water-accommodated fraction of oil (WAF), (iii) oil dispersant Corexit 9500, and (iv) WAF chemically-enhanced with Corexit (CEWAF). The oil and Corexit treatments were employed to simulate conditions during the Deepwater Horizon oil spill. Polysaccharide hydrolysis rates in the surface-water treatments were lowest in the WAF treatment, despite elevated levels of EPS in the form of transparent exopolymer particles (TEP). In contrast, the three deep-water treatments (WAF, Corexit, CEWAF) showed enhanced hydrolysis rates and TEP levels (WAF) compared to the whole water. We also observed variations in the spectrum of polysaccharide-hydrolyzing enzyme activities among the treatments. These substrate specificities were likely driven by activities of oil-degrading bacteria, shaping the pool of EPS and TEP as well as degradation products of hydrocarbons and Corexit compounds. A model calculation of potential turnover rates of organic carbon within the TEP pool suggests extended residence times of TEP in oil-contaminated waters, making them prone to serve as the sticky matrix for oily aggregates known as marine oil snow.



2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Meenaa Chandrasekar ◽  
Leela Joshi ◽  
Karleigh Krieg ◽  
Sarvada Chipkar ◽  
Emily Burke ◽  
...  

Abstract Background Environmental factors, such as weather extremes, have the potential to cause adverse effects on plant biomass quality and quantity. Beyond adversely affecting feedstock yield and composition, which have been extensively studied, environmental factors can have detrimental effects on saccharification and fermentation processes in biofuel production. Only a few studies have evaluated the effect of these factors on biomass deconstruction into biofuel and resulting fuel yields. This field-to-fuel evaluation of various feedstocks requires rigorous coordination of pretreatment, enzymatic hydrolysis, and fermentation experiments. A large number of biomass samples, often in limited quantity, are needed to thoroughly understand the effect of environmental conditions on biofuel production. This requires greater processing and analytical throughput of industrially relevant, high solids loading hydrolysates for fermentation, and led to the need for a laboratory-scale high solids experimentation platform. Results A field-to-fuel platform was developed to provide sufficient volumes of high solids loading enzymatic hydrolysate for fermentation. AFEX pretreatment was conducted in custom pretreatment reactors, followed by high solids enzymatic hydrolysis. To accommodate enzymatic hydrolysis of multiple samples, roller bottles were used to overcome the bottlenecks of mixing and reduced sugar yields at high solids loading, while allowing greater sample throughput than possible in bioreactors. The roller bottle method provided 42–47% greater liquefaction compared to the batch shake flask method for the same solids loading. In fermentation experiments, hydrolysates from roller bottles were fermented more rapidly, with greater xylose consumption, but lower final ethanol yields and CO2 production than hydrolysates generated with shake flasks. The entire platform was tested and was able to replicate patterns of fermentation inhibition previously observed for experiments conducted in larger-scale reactors and bioreactors, showing divergent fermentation patterns for drought and normal year switchgrass hydrolysates. Conclusion A pipeline of small-scale AFEX pretreatment and roller bottle enzymatic hydrolysis was able to provide adequate quantities of hydrolysate for respirometer fermentation experiments and was able to overcome hydrolysis bottlenecks at high solids loading by obtaining greater liquefaction compared to batch shake flask hydrolysis. Thus, the roller bottle method can be effectively utilized to compare divergent feedstocks and diverse process conditions.



Sign in / Sign up

Export Citation Format

Share Document