spinner flask
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Selen Uman ◽  
Jason A Burdick

Introduction: Early studies have shown therapeutic benefits of mesenchymal stromal cells (MSCs) in cardioprotection due to their angiogenic, proliferative, anti-apoptotic and anti-inflammatory properties, which are now attributed to secreted factors such as extracellular vesicles (EVs). While MSC-EVs have shown promise in small animals for cardiovascular therapies, large animal studies are required to evaluate the therapeutic benefit of MSC-EVs for clinical translation. One of the biggest challenges for large animal studies is the need to generate clinically-relevant quality and quantity of EVs without batch-to-batch variations that could compromise efficacy. This study aims to explore three different cell culture methods (traditionally-used tissue culture plates (TCP), 3-D printed bioscaffolds in a perfusion system (P), and microcarriers in dynamic spinner flask conditions (M)) to scale-up the production of MSC-EVs across four different biological donors and rigorously investigate EV yield, size, shape, and content. Methods: MSCs were isolated from the iliac crest of four different Yucatan minipigs using heparinized syringes, and cells were expanded to passage four, at which point they were seeded onto the respective cell culture methods. EVs were collected from conditioned medium (CM) via differential ultracentrifugation. EV size, distribution, yield, and protein concentration were studied using Nanoparticle Tracking Analysis (NTA) and microBCA assays. Results: Both perfusion bioreactor and spinner flask systems enabled sustained maintenance of large numbers of cells. Across biological donors and fabrication methods, modes remained within 50-150 nm and were not statistically different. Microcarrier-based spinner flasks and perfusion bioreactor set-ups both improved EV yield, up to 6 times in efficiency. Ongoing research focuses on examining differences in EV content across biological donors using RNA-sequencing and proteomics.


2021 ◽  
Vol 168 ◽  
pp. 107947
Author(s):  
Richard Jeske ◽  
Shaquille Lewis ◽  
Ang-Chen Tsai ◽  
Kevin Sanders ◽  
Chang Liu ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Muhammad Najib Fathi Bin Hassan ◽  
Muhammad Dain Yazid ◽  
Mohd Heikal Mohd Yunus ◽  
Shiplu Roy Chowdhury ◽  
Yogeswaran Lokanathan ◽  
...  

Mesenchymal stem cells (MSCs) are multipotent stem cells with strong immunosuppressive property that renders them an attractive source of cells for cell therapy. MSCs have been studied in multiple clinical trials to treat liver diseases, peripheral nerve damage, graft-versus-host disease, autoimmune diseases, diabetes mellitus, and cardiovascular damage. Millions to hundred millions of MSCs are required per patient depending on the disease, route of administration, frequency of administration, and patient body weight. Multiple large-scale cell expansion strategies have been described in the literature to fetch the cell quantity required for the therapy. In this review, bioprocessing strategies for large-scale expansion of MSCs were systematically reviewed and discussed. The literature search in Medline and Scopus databases identified 26 articles that met the inclusion criteria and were included in this review. These articles described the large-scale expansion of 7 different sources of MSCs using 4 different bioprocessing strategies, i.e., bioreactor, spinner flask, roller bottle, and multilayered flask. The bioreactor, spinner flask, and multilayered flask were more commonly used to upscale the MSCs compared to the roller bottle. Generally, a higher expansion ratio was achieved with the bioreactor and multilayered flask. Importantly, regardless of the bioprocessing strategies, the expanded MSCs were able to maintain its phenotype and potency. In summary, the bioreactor, spinner flask, roller bottle, and multilayered flask can be used for large-scale expansion of MSCs without compromising the cell quality.


2020 ◽  
Vol 157 ◽  
pp. 107533
Author(s):  
Masoud Ghasemian ◽  
Carys Layton ◽  
Daniel Nampe ◽  
Nicole Isolde zur Nieden ◽  
Hideaki Tsutsui ◽  
...  

2019 ◽  
Vol 20 (16) ◽  
pp. 4024
Author(s):  
Hsiou-Hsin Tsai ◽  
Kai-Chiang Yang ◽  
Meng-Huang Wu ◽  
Jung-Chih Chen ◽  
Ching-Li Tseng

The culture environment plays an important role for stem cells’ cultivation. Static or dynamic culture preserve differential potentials to affect human mesenchymal stem cells’ (hMSCs) proliferation and differentiation. In this study, hMSCs were seeded on fiber disks and cultured in a bidirectional-flow bioreactor or spinner-flask bioreactor with a supplement of osteogenic medium. The hMSCs’ proliferation, osteogenic differentiation, and extracellular matrix deposition of mineralization were demonstrated. The results showed that the spinner flask improved cell viability at the first two weeks while the bidirectional-flow reactor increased the cell proliferation of hMSCs through the four-week culture period. Despite the flow reactor having a higher cell number, a lower lactose/glucose ratio was noted, revealing that the bidirectional-flow bioreactor provides better oxygen accessibility to the cultured cells/disk construct. The changes of calcium ions in the medium, the depositions of Ca2+ in the cells/disk constructs, and alkaline phosphate/osteocalcin activities showed the static culture of hMSCs caused cells to mineralize faster than the other two bioreactors but without cell proliferation. Otherwise, cells were distributed uniformly with abundant extracellular matrix productions using the flow reactor. This reveals that the static and dynamic cultivations regulated the osteogenic process differently in hMSCs. The bidirectional-flow bioreactor can be used in the mass production and cultivation of hMSCs for applications in bone regenerative medicine.


2019 ◽  
Vol 52 (4) ◽  
Author(s):  
Huimin He ◽  
Qing He ◽  
Feiyue Xu ◽  
Yan Zhou ◽  
Zhaoyang Ye ◽  
...  

2018 ◽  
Vol 5 (4) ◽  
pp. 106 ◽  
Author(s):  
Valentin Jossen ◽  
Regine Eibl ◽  
Matthias Kraume ◽  
Dieter Eibl

Human adipose tissue-derived stromal/stem cells (hASCs) are a valuable source of cells for clinical applications, especially in the field of regenerative medicine. Therefore, it comes as no surprise that the interest in hASCs has greatly increased over the last decade. However, in order to use hASCs in clinically relevant numbers, in vitro expansion is required. Single-use stirred bioreactors in combination with microcarriers (MCs) have shown themselves to be suitable systems for this task. However, hASCs tend to be less robust, and thus, more shear sensitive than conventional production cell lines for therapeutic antibodies and vaccines (e.g., Chinese Hamster Ovary cells CHO, Baby Hamster Kidney cells BHK), for which these bioreactors were originally designed. Hence, the goal of this study was to investigate the influence of different shear stress levels on the growth of humane telomerase reversed transcriptase immortalized hASCs (hTERT-ASC) and aggregate formation in stirred single-use systems at the mL scale: the 125 mL (= SP100) and the 500 mL (= SP300) disposable Corning® spinner flask. Computational fluid dynamics (CFD) simulations based on an Euler–Euler and Euler–Lagrange approach were performed to predict the hydrodynamic stresses (0.06–0.87 Pa), the residence times (0.4–7.3 s), and the circulation times (1.6–16.6 s) of the MCs in different shear zones for different impeller speeds and the suspension criteria (Ns1u, Ns1). The numerical findings were linked to experimental data from cultivations studies to develop, for the first time, an unstructured, segregated mathematical growth model for hTERT-ASCs. While the 125 mL spinner flask with 100 mL working volume (SP100) provided up to 1.68.105 hTERT-ASC/cm2 (= 0.63 × 106 living hTERT-ASCs/mL, EF 56) within eight days, the peak living cell density of the 500 mL spinner flask with 300 mL working volume (SP300) was 2.46 × 105 hTERT-ASC/cm2 (= 0.88 × 106 hTERT-ASCs/mL, EF 81) and was achieved on day eight. Optimal cultivation conditions were found for Ns1u < N < Ns1, which corresponded to specific power inputs of 0.3–1.1 W/m3. The established growth model delivered reliable predictions for cell growth on the MCs with an accuracy of 76–96% for both investigated spinner flask types.


2018 ◽  
Author(s):  
Livia Goto-Silva ◽  
Nadia M. E. Ayad ◽  
Iasmin L. Herzog ◽  
Nilton P. Silva ◽  
Bernard Lamien ◽  
...  

AbstractOrganoid cultivation in suspension culture requires agitation at low shear stress to allow for nutrient diffusion, which preserves tissue structure. Multiplex systems for organoid cultivation have been proposed, but whether they meet similar shear stress parameters as the regularly used spinner flask and its correlation with the successful generation of brain organoids, has not been determined. Herein, we used computational fluid dynamics (CFD) analysis to compare two multiplex culture conditions: steering plates on an orbital shaker and the use of a previously described bioreactor. The bioreactor had low speed and high shear stress regions that may affect cell aggregate growth, depending on volume, whereas the CFD parameters of the steering plates were closest to the parameters of the spinning flask. Our protocol improves the initial steps of the standard brain organoid formation, and organoids produced therefrom displayed regionalized brain structures, including retinal pigmented cells. Overall, we conclude that suspension culture on orbital steering plates is a cost-effective practical alternative to previously described platforms for the cultivation of brain organoids for research and multiplex testing.HighlightsImprovements to organoid preparation protocolMultiplex suspension culture protocol successfully generate brain organoidsComputational fluid dynamics (CFD) reveals emerging properties of suspension culturesCFD of steering plates is equivalent to that of spinner flask cultures


Sign in / Sign up

Export Citation Format

Share Document