Teaching T cells to remember : the role of antigen presenting cells in the development of CD4+ T cell memory

2009 ◽  
Author(s):  
Jason Scott Ellis
2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Iuliia Peshkova ◽  
Aliia Fatkhullina ◽  
Ekaterina Koltsova

Atherosclerosis is a lipid-driven inflammatory disease characterized by the progressive plaque growth in the vessels. Cytokines are important mediators of inflammation and atherosclerosis. While pro-inflammatory cytokines were extensively investigated, little is known about the role of anti-inflammatory cytokines as to their ability to control vascular inflammation. We tested whether immunoregulatory IL-27R signaling is important to control inflammation in mouse models of atherosclerosis. We found that atherosclerosis-prone mice with hematopoietic deficiency of IL-27R ( Ldlr -/- mice reconstituted with bone marrow from Il27ra -/- ) or global deficiency ( Il27ra -/- x Apoe -/- ) developed significantly larger atherosclerotic lesions compared to controls. Atherosclerotic lesions in IL-27R deficient mice contained more CD45 + leukocytes and CD4 + T cells, which produced pro-atherogenic cytokines IL-17A and TNF-α. These cytokines normally suppressed by IL-27, regulated the expression of CCL2 and other chemokines, which in turn led to accumulation of myeloid CD11b + and CD11c + cells in atherosclerotic aortas. Using two-photon microscopy, we found enhanced interactions between antigen presenting cells and T cells in the aortas of IL-27R deficient mice accompanied by enhanced CD4 T cell proliferation. Moreover, macrophages in Il27ra -/- aortas also demonstrated enhanced ability to produce pro-inflammatory cytokines, including IL-1. The blockade of IL-1R signaling, however, strongly suppressed atherosclerosis progression in IL-27R deficient but not control mice, suggesting an important role of IL-27 in the regulation of IL-1 production in atherosclerosis. Overall, our data demonstrate that IL-27R signaling in atherosclerosis is required to control function of antigen presenting cells modulating subsequent T cell activation in the aortas. Moreover, it controls macrophage activation and pro-inflammatory myeloid cell-derived cytokine production. These mechanisms altogether curb pathogenic T cell lineage differentiation and, thus, atherosclerosis, suggesting potent anti-atherogenic role of IL-27.


2020 ◽  
Vol 4 (12) ◽  
pp. 2595-2605 ◽  
Author(s):  
Ole Audun W. Haabeth ◽  
Kjartan Hennig ◽  
Marte Fauskanger ◽  
Geir Åge Løset ◽  
Bjarne Bogen ◽  
...  

Abstract CD4+ T cells may induce potent antitumor immune responses through interaction with antigen-presenting cells within the tumor microenvironment. Using a murine model of multiple myeloma, we demonstrated that adoptive transfer of idiotype-specific CD4+ T cells may elicit curative responses against established multifocal myeloma in bone marrow. This finding indicates that the myeloma bone marrow niche contains antigen-presenting cells that may be rendered tumoricidal. Given the complexity of the bone marrow microenvironment, the mechanistic basis of such immunotherapeutic responses is not known. Through a functional characterization of antitumor CD4+ T-cell responses within the bone marrow microenvironment, we found that killing of myeloma cells is orchestrated by a population of bone marrow–resident CD11b+F4/80+MHC-IIHigh macrophages that have taken up and present secreted myeloma protein. The present results demonstrate the potential of resident macrophages as powerful mediators of tumor killing within the bone marrow and provide a basis for novel therapeutic strategies against multiple myeloma and other malignancies that affect the bone marrow.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 688-688
Author(s):  
Isao Tawara ◽  
Tomomi Toubai ◽  
Chelsea Malter ◽  
Yaping Sun ◽  
Evelyn Nieves ◽  
...  

Abstract Abstract 688 Several lines of evidence show that donor derived mature CD4+CD25+Foxp3+ regulatory T cells (Tregs) suppress experimental GVHD. The mechanism of GVHD suppression by donor Tregs is, however, not well understood. Recent observations have brought in a renewed focus on the role of professional antigen presenting cells (APCs) in the induction and maintenance of GVHD by alloreactive T cell effectors (Teffs). But the role of APCs in modulating the responses of Tregs after allogeneic BMT is not known. We first tested the requirement of host APCs in Treg mediated regulation of GVHD. We utilized a clinically relevant CD8+ T cell dependent MHC matched but miHA disparate C3H.SW (H-2b) → wild type (wt) or Class II deficient Abb (II-/-) B6 (H-2b) model of GVHD because host APCs and target tissues from the Abb animals do not express class II and as such donor CD4+CD25+ Tregs will not directly interact with the host tissues while alloreactive CD8+ T cells could still respond to miHA allo-antigens presented by the intact class I on host APCs. The recipient Abb (II-/-) and wt B6 animals were lethally irradiated and transplanted with 2 × 105 CD8+ T cells along with or without CD4+CD25+ Tregs at 1:2 ratio from either syngeneic B6 or allogeneic C3H.SW animals. The wt recipients that received Tregs showed significantly better survival compared with the wt animals that did not receive any Tregs (P< 0.01) while the class II-/- animals showed similar GVHD mortality regardless of Treg infusion (P>0.8). To confirm whether the lack of Treg mediated protection was only due to the absence of interaction with host type APCs and also to exclude the possibility of development of Tregs from the infused BM we thymectomized wt B6 animals and then generated [B6 B6] controls and the [Abb B6] chimeras. These chimeric animals were used as recipients in a second BMT and transplanted with CD8+ Teffs and Tregs from allogeneic C3H.SW mice. Tregs reduced GVHD mortality in the [B6 B6] (P<0.01) but not in the [Abb B6] animals (P>0.7). We next evaluated whether host APC expression of allo-antigens alone was sufficient for Treg mediated GVHD protection in the absence of class II expression on target tissues by generating [B6 B6] and [B6 Abb] chimeras and found that Tregs demonstrated equivalent GVHD protection even when the class II allo-antigens were expressed only on the host APCs. Mechanistic studies demonstrated that Tregs significantly inhibited the expansion of CD8+ Teffs on days +10 and 17 after BMT in the spleens of the WT recipients (P<0.05) but not in the class II-/- animals. However, infused Tregs demonstrated reduced expansion in the class II-/- animals only early after BMT (on day +10) but was equivalent at later time-point (days 17 and 29) to the WT recipients. We further determined the mechanisms by which host APCs might contribute to Treg mediated protection. To this end we used IL-10-/-, indoleamine 2, 3 dioxygenase (IDO)-/- deficient animals and generated [IL-10-/- B6] and [IDO-/- B6] animals as recipients. Tregs mitigated GVHD mortality regardless of the ability of the host APCs to express IL-10 or IDO. We next determined whether Tregs suppressed Teffs in their activation phase at the level of their interaction with host APCs or in the effector phase. C3H.SW CD8+ T cells were primed (both in vivo and ex vivo with B6 allo-antigens) and then infused into the [β2mg-/- B6] animals such that pre-activated CD8 Teffs would still be able to initiate GVHD without the need for host APCs for their activation. Infusion of donor Tregs into [β2mg-/- B6] animals that were transplanted with the pre-activated Teffs mitigated GVHD severity demonstrating that Tregs, once activated by host APCs, were capable of suppressing Teff cells in their effector phase. Collectively our data show (a) host APCs are critical (b) expression of allo-antigens on host target tissues is not obligatory (c) host derived IL-10 and IDO are not critical for Treg mediated GVHD protection and (d) Tregs can mitigate GVHD by suppressing alloreactive Teffs in the effector phase even after they have been activated. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 211 (1) ◽  
pp. 8-22 ◽  
Author(s):  
Susan L. Swain ◽  
Javed N. Agrewala ◽  
Deborah M. Brown ◽  
Dawn M. Jelley‐Gibbs ◽  
Susanne Golech ◽  
...  

2016 ◽  
Vol 7 ◽  
Author(s):  
Anthony DiPiazza ◽  
Katherine A. Richards ◽  
Zackery A. G. Knowlden ◽  
Jennifer L. Nayak ◽  
Andrea J. Sant

MedChemComm ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 138-148 ◽  
Author(s):  
Youhui Si ◽  
Yi Wen ◽  
Jianjun Chen ◽  
Rebecca R. Pompano ◽  
Huifang Han ◽  
...  

Self-assembled peptide nanofiber vaccines trigger redundant MyD88-dependent and MyD88-independent signaling pathways in APCs and T cells.


Blood ◽  
2011 ◽  
Vol 118 (4) ◽  
pp. 1008-1014 ◽  
Author(s):  
Chongyun Fang ◽  
Takashi Miwa ◽  
Wen-Chao Song

Abstract Recent studies have indicated a role of complement in regulating T-cell immunity but the mechanism of action of complement in this process remains to be clarified. Here we studied mice deficient in decay-accelerating factor (DAF), a key membrane complement regulator whose deficiency led to increased complement-dependent T-cell immune responses in vivo. By crossing OT-II and OT-I T-cell receptor transgenic mice with DAF-knockout mice, we found that lack of DAF on T cells did not affect their responses to antigen stimulation. Similarly, lack of DAF on antigen-presenting cells (APCs) of naive mice did not alter their T-cell stimulating activity. In contrast, APCs from DAF-knockout mice treated with inflammatory stimuli were found to be more potent T-cell stimulators than cells from similarly treated wild-type mice. Acquisition of higher T-cell stimulating activity by APCs in challenged DAF-knockout mice required C3 and C5aR and was correlated with decreased surface PD-L1 and/or increased CD40 expression. These findings implied that DAF suppressed T-cell immunity as a complement regulator in the context of inflammation but did not play an intrinsic role on T cells or APCs. Collectively, our data suggest a systemic and indirect role of complement in T-cell immunity.


2020 ◽  
Author(s):  
Anastassia Mikhailova ◽  
José Carlos Valle-Casuso ◽  
Annie David ◽  
Valérie Monceaux ◽  
Stevenn Volant ◽  
...  

ABSTRACTHIV-1 successfully establishes long-term infection in its target cells despite viral cytotoxic effects. We have recently shown that cell metabolism is an important factor driving CD4+ T-cell susceptibility to HIV-1 and the survival of infected cells. We show here that expression of anti-apoptotic clone 11 (AAC-11), an anti-apoptotic factor upregulated in many cancers, increased with progressive CD4+ T cell memory differentiation in association with the expression of cell cycle, activation and metabolism genes and correlated with susceptibility to HIV-1 infection. Synthetic peptides based on the LZ domain sequence of AAC-11, responsible for its interaction with molecular partners, were previously shown to be cytotoxic to cancer cells. Here we observed that these peptides also blocked HIV-1 infection by inducing cell death of HIV-1 susceptible primary CD4+ T-cells across all T-cell subsets. The peptides targeted metabolically active cells and had the greatest effect on effector and transitional CD4+ T cell memory subsets. Our results suggest that AAC-11 survival pathway is potentially involved in the survival of HIV-1 infectable cells and provide a proof of principle that some cellular characteristics can be targeted to eliminate the cells offering the best conditions to sustain HIV-1 replication.IMPORTANCEAlthough antiretroviral treatment efficiently blocks HIV multiplication, it cannot eliminate the cells already carrying integrated proviruses. In the search for a HIV cure the identification of new potential targets to selectively eliminate infected cells is of the outmost importance. We show here that peptides derived from the anti-apoptotic clone 11 (AAC-11), which expression levels correlated with susceptibility to HIV-1 infection of CD4+ T-cells, induced cytotoxicity in CD4+ T-cells showing the highest levels of activation and metabolic activity, conditions known to favor HIV-1 infection. Accordingly, CD4+ T-cells that survived the cytotoxic action of the AAC-11 peptides were resistant to HIV-1 replication. Our results identify a new potential molecular pathway to target HIV-1 infection.


Sign in / Sign up

Export Citation Format

Share Document