scholarly journals Quick Reference Guide to Postemergence Herbicides for Citrus Weed Control

EDIS ◽  
2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Ramdas Kanissery ◽  
Camille E. McAvoy ◽  
Jamie D. Burrow ◽  
Stephen H. Futch ◽  
Brent A. Sellers ◽  
...  

This quick reference table will provide growers with information (suggested rates, use restrictions, etc.) on different herbicides used in citrus. The herbicide table, prepared based on the Florida Citrus Production Guide, will aid growers to select an appropriate postemergent herbicide program in citrus groves. Written by Ramdas Kanissery, Camille E. McAvoy, Jamie D. Burrow, Stephen H. Futch, Brent A. Sellers, and S. Shea Teems, and published by the UF/IFAS Horticultural Sciences Department.https://edis.ifas.ufl.edu/hs1410

2011 ◽  
Vol 21 (5) ◽  
pp. 606-615 ◽  
Author(s):  
Megh Singh ◽  
Mayank Malik ◽  
Analiza H.M. Ramirez ◽  
Amit J. Jhala

Citrus (Citrus spp.) is one of the most important crops in Florida agriculture. Weed control is a major component in citrus production practices. If not controlled, weeds may compete with citrus trees for nutrients, water, and light and may also increase pest problems. Herbicides are an important component of integrated weed management program in citrus. Saflufenacil, a new herbicide registered for broadleaf weed control in citrus, can be applied alone or in a tank mix with other herbicides to improve weed control efficacy. A total of six field experiments were conducted in 2008 and 2009 to evaluate the efficacy of saflufenacil applied alone or in a tank mix with glyphosate and pendimethalin for weed control. In addition, experiments were also conducted to evaluate phytotoxicity of saflufenacil applied at different rates and time intervals in citrus. The results suggested that saflufenacil applied alone was usually effective for early season broadleaf weed control; however, weed control efficacy reduced beyond 30 days after treatment (DAT) compared with a tank mix of saflufenacil, glyphosate, and pendimethalin. For example, control of weeds was ≤70% when saflufenacil or glyphosate applied alone compared with tank mix treatments at 60 and 90 DAT. Addition of pendimethalin as a tank mix partner usually resulted in better residual weed control compared with a tank mix of saflufenacil and glyphosate, and this herbicide mixture was comparable with grower's adopted standard treatment of a tank mix of glyphosate, norflurazon, and diuron and several other tank mix treatments. Saflufenacil applied once in a season at different rates or even in sequential applications did not injure citrus trees when applied according to label directions. It is concluded that with its novel mode of action, saflufenacil tank mixed with glyphosate and pendimethalin would provide citrus growers with another chemical tool to control broadleaf and grass weeds.


2012 ◽  
Vol 22 (5) ◽  
pp. 638-643 ◽  
Author(s):  
Amit J. Jhala ◽  
Analiza H.M. Ramirez ◽  
Megh Singh

Herbicides are usually applied multiple times by growers for season long weed control in Florida citrus (Citrus sp.). Rimsulfuron, a sulfonylurea herbicide has been recently registered for control of certain grasses and broadleaf weeds in citrus. To increase the weed control spectrum and reduce application cost, citrus growers often prefer to tank mix herbicides. Field experiments were conducted in 2010 and 2011 in citrus groves in central Florida to evaluate weed control efficacy and crop safety of rimsulfuron applied alone or in tank mixes with flumioxazin, pendimethalin, or oryzalin. Herbicides were applied sequentially in spring and fall in both years on the same experimental plot. Results suggested that rimsulfuron applied alone controlled >80% broadleaf and grass weeds up to 30 days after treatment (DAT) and was comparable to tank mixing rimsulfuron with pendimethalin or oryzalin; however, control was reduced beyond 30 DAT. Rimsulfuron tank mixed with flumioxazin was the most effective treatment at 30 and 60 DAT that provided, respectively, ≥88% and >75%, control of broadleaf weeds including brazil pusley (Richardia brasiliensis), dog fennel (Eupatorium capillifolium), common ragweed (Ambrosia artemisiifolia), cotton weed (Froelichia floridana), and virginia pepperweed (Virginia virginicum) compared with other treatments. Control of natalgrass (Melinis repens) was higher in all tank mix treatments compared with rimsulfuron applied alone with no difference among tank mix partners. Rimsulfuron tank mixed with pendimethalin or oryzalin had no advantage over rimsulfuron applied alone for control of broadleaf weeds. Among sequential applications, weed control was better after fall herbicide application (August) compared with spring (April) because of residual activity of fall applied herbicides. Rimsulfuron tank mixed with flumioxazin will provide citrus growers with an additional weed control option.


Weed Science ◽  
1982 ◽  
Vol 30 (4) ◽  
pp. 430-433 ◽  
Author(s):  
George E. Templeton

Chemical herbicides are without question the most effective immediate solution to most weed problems. They are not, however, the only option or necessarily the best for all weed control situations (23, 24, 34). Recent commercialization of two biological herbicides illustrates another weed control technology with potential (24, 27, 44, 50). Abbott Laboratories marketed the fungusPhytophthora palmivoraButler in 1981 for control of strangler vine (Morrenia odorataLindl.) in Florida citrus groves. The Upjohn Company will market the fungus (Colletotrichum gloeosporioidesf. sp.aeschynomene(c.g.a.) in 1982 for control of northern jointvetch [Aeschynomene virginica(L.) B.S.P.] in Arkansas rice (Oryza sativaL.) and soybean [Glycine max(L.) Merr.] fields (45).


EDIS ◽  
2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
Tripti Vashisth ◽  
W. Chris Oswalt ◽  
Mongi Zekri ◽  
Fernando Miguel Alferez ◽  
Jamie D. Burrow

Plant growth regulators (PGRs) are a tool used to manipulate vegetative and reproductive growth, flowering, and fruit growth and development. PGRs have been successfully used in agriculture for decades to amend plant growth characteristics to maximize yield and grower profit. This new 4-page fact sheet discusses auxins, gibberellins, cytokinins, abscisic acid, ethylene, new classes of plant hormones, use of PGRs for HLB-affected trees, and general considerations for PGR use in Florida citrus groves. Written by Tripti Vashisth, Chris Oswalt, Mongi Zekri, Fernando Alferez, and Jamie D. Burrow, and published by the UF/IFAS Horticultural Sciences Department, February 2018.  http://edis.ifas.ufl.edu/hs1310


EDIS ◽  
2020 ◽  
Author(s):  
Ramdas Kanissery ◽  
Stephen H. Futch ◽  
Brent A. Sellers

EDIS ◽  
2019 ◽  
Vol 2019 (5) ◽  
pp. 3
Author(s):  
Ramdas Kanissery ◽  
Biwek Gairhe ◽  
Brent Sellers ◽  
Steve Futch

In Florida, clustered pellitory is becoming a troublesome weed for citrus, especially from the winter through early summer. Inadequate management of this weed can result in its heavy infestation in tree rows and can interrupt the spray pattern of low-volume drip irrigation systems. This new 3-page publication of the UF/IFAS Horticultural Sciences Department will assist Florida citrus growers with proper identification of clustered pellitory and with adoption of adequate and timely strategies to manage this weed in their groves. Written by Ramdas Kanissery, Biwek Gairhe, Brent Sellers, and Steve Futch. https://edis.ifas.ufl.edu/hs1341


Sign in / Sign up

Export Citation Format

Share Document