Stink Bugs in Florida Rice

EDIS ◽  
2013 ◽  
Vol 2013 (11) ◽  
Author(s):  
Ron Cherry

Although many different insects can be found in rice fields in Florida, stink bugs are currently considered the most important pest. Jones and Cherry reported that the rice stink bug was the dominant species, comprising more than 95% of the total stink bug population. Cherry et al. (1998) reported that the stink bug Oebalus ypsilongriseus was widespread in Florida rice fields. This was the first report of this species being found in commercial rice fields in the United States. Cherry and Nuessly (2010) reported that the stink bug Oebalus insularis is now widespread in Florida rice fields. This was the first report of this species being found in commercial rice fields in the United States. The stink bug complex attacking Florida rice is the most diversified and unique stink bug complex in US rice production. This 4-page fact sheet was written by Ron Cherry, and published by the UF Department of Entomology and Nematology, October 2013. http://edis.ifas.ufl.edu/in1009

2019 ◽  
Vol 112 (4) ◽  
pp. 1722-1731 ◽  
Author(s):  
Daniela T Pezzini ◽  
Christina D DiFonzo ◽  
Deborah L Finke ◽  
Thomas E Hunt ◽  
Janet J Knodel ◽  
...  

Abstract Stink bugs (Hemiptera: Pentatomidae) are an increasing threat to soybean (Fabales: Fabaceae) production in the North Central Region of the United States, which accounts for 80% of the country’s total soybean production. Characterization of the stink bug community is essential for development of management programs for these pests. However, the composition of the stink bug community in the region is not well defined. This study aimed to address this gap with a 2-yr, 9-state survey. Specifically, we characterized the relative abundance, richness, and diversity of taxa in this community, and assessed phenological differences in abundance of herbivorous and predatory stink bugs. Overall, the stink bug community was dominated by Euschistus spp. (Hemiptera: Pentatomidae) and Chinavia hilaris (Say) (Hemiptera: Pentatomidae). Euschistus variolarius (Palisot de Beauvois) (Hemiptera: Pentatomidae), C. hilaris and Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) were more abundant in the northwestern, southeastern and eastern parts, respectively, of the North Central Region of the United States. Economically significant infestations of herbivorous species occurred in fields in southern parts of the region. Species richness differed across states, while diversity was the same across the region. Herbivorous and predatory species were more abundant during later soybean growth stages. Our results represent the first regional characterization of the stink bug community in soybean fields and will be fundamental for the development of state- and region-specific management programs for these pests in the North Central Region of the United States.


2021 ◽  
Vol 12 ◽  
Author(s):  
Matheus Sartori Moro ◽  
Xing Wu ◽  
Wei Wei ◽  
Lucas William Mendes ◽  
Kerry Clint Allen ◽  
...  

Background: Herbivorous insects are one of the main biological threats to crops. One such group of insects, stink bugs, do not eat large amounts of tissue when feeding on soybean, but are damaging to the quality of the seed yield as they feed on green developing seeds leading to poorly marketable harvests. In addition to causing physical damage during sucking-feeding activities, the insects can also transmit microbial pathogens, leading to even greater yield loss. Conducting surveys of the insect intestinal microbiome can help identify possible pathogens, as well as detail what healthy stink bug digestive systems have in common.Methods: We used the conserved V4 region of the 16S rRNA gene to characterize the bacterial microbiome of the red-banded stink bug Piezodorus guildinii collected in Brazil and the United States, as well as the neotropical brown stink bug Euschistus heros collected in Brazil.Results: After quality filtering of the data, 192 samples were kept for analyses: 117 samples from P. guildinii covering three sites in Brazil and four sites in the United States, and 75 samples for E. heros covering 10 sites in Brazil. The most interesting observations were that the diversity and abundance of some bacterial families were different in the different ecoregions of Brazil and the United States.Conclusion: Some families, such as Acetobacteraceae, Bacillaceae, Moraxellaceae, Enterobacteriaceae, and Rhodocyclaceae, may be related to the better adaptation in some localities in providing nutrients, break down cellulose, detoxify phytochemicals, and degrade organic compounds, which makes it difficult to control these species.


2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Pheylan A Anderson ◽  
Daniela T Pezzini ◽  
Nádia M Bueno ◽  
Christina D DiFonzo ◽  
Deborah L Finke ◽  
...  

Abstract Stink bugs (Hemiptera: Pentatomidae) are agricultural pests of increasing significance in the North Central Region of the United States, posing a threat to major crops such as soybean. Biological control can reduce the need for insecticides to manage these pests, but the parasitism of stink bugs by Tachinidae (Diptera) is poorly characterized in this region. The objective of this study was to evaluate the rate of parasitism of stink bugs by tachinids over 2 yr from nine states across the North Central Region. Parasitism was assessed by quantifying tachinid eggs on the integument of stink bug adults. Parasitism rates (i.e., percent of adult stink bugs with tachinid eggs) were compared across stink bug species, states, stink bug sex, and years. The mean percent parasitism of stink bugs by tachinids was about 6% across the region and did not differ among stink bug species. Mean percent parasitism was significantly higher in Missouri than in northern and western states. In addition, male stink bugs had significantly higher mean percent parasitism than females. Stink bug species commonly found in soybean in the region showed some parasitism and are therefore potentially vulnerable to oviposition by these parasitoids. This is the first study to characterize the level of parasitism of stink bugs by tachinids across the North Central Region.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Tracy C. Leskey ◽  
Brent D. Short ◽  
Bryan R. Butler ◽  
Starker E. Wright

Four commercial orchards in the mid-Atlantic region of the United States were surveyed weekly in 2010 and 2011 for the presence of brown marmorated stink bug and the injury caused to both apple and peaches. Among tested sampling techniques, pyramid traps baited with the aggregation pheromone ofPlautia staliScott, methyl-(2E,4E,6Z)-decatrienoate, yielded the most brown marmorated stink bug adults and nymphs, followed by visual observations. Brown marmorated stink bugs began to feed on apples and peaches soon after fruit set and continued to feed on fruit throughout the growing season. Injury to apple was relatively inconsequential until after mid-June, whereas feeding on peaches resulted in immediate economic injury as the surface became distorted, dented, discolored, and the flesh beneath turned brown. Significantly more apples were injured and with greater severity in 2010 than in 2011. Likewise, percent injury on the exterior portion of each apple plot was significantly greater than injury reported from the interior in both years. Growers increased the number of insecticide applications nearly 4-fold from 2010 to 2011. In addition to the increased number of targeted insecticide applications, growers also reduced the interval between treatments in 2011. A metric was created to compare the relative intensity of each grower's commercial management program between seasons and amongst each other.


2019 ◽  
Vol 112 (4) ◽  
pp. 1732-1740 ◽  
Author(s):  
Daniela T Pezzini ◽  
Christina D DiFonzo ◽  
Deborah L Finke ◽  
Thomas E Hunt ◽  
Janet J Knodel ◽  
...  

Abstract Stink bugs are an emerging threat to soybean (Fabales: Fabaceae) in the North Central Region of the United States. Consequently, region-specific scouting recommendations for stink bugs are needed. The aim of this study was to characterize the spatial pattern and to develop sampling plans to estimate stink bug population density in soybean fields. In 2016 and 2017, 125 fields distributed across nine states were sampled using sweep nets. Regression analyses were used to determine the effects of stink bug species [Chinavia hilaris (Say) (Hemiptera: Pentatomidae) and Euschistus spp. (Hemiptera: Pentatomidae)], life stages (nymphs and adults), and field locations (edge and interior) on spatial pattern as represented by variance–mean relationships. Results showed that stink bugs were aggregated. Sequential sampling plans were developed for each combination of species, life stage, and location and for all the data combined. Results for required sample size showed that an average of 40–42 sample units (sets of 25 sweeps) would be necessary to achieve a precision of 0.25 for stink bug densities commonly encountered across the region. However, based on the observed geographic gradient of stink bug densities, more practical sample sizes (5–10 sample units) may be sufficient in states in the southeastern part of the region, whereas impractical sample sizes (>100 sample units) may be required in the northwestern part of the region. Our findings provide research-based sampling recommendations for estimating densities of these emerging pests in soybean.


2021 ◽  
Author(s):  
Matheus Sartori Moro ◽  
Xing Wu ◽  
Wei Wei ◽  
Lucas William Mendes ◽  
Clint Allen ◽  
...  

Abstract Background: Herbaceous insects are one of the main biological threats to crops. One such group of insects, stink bugs, do not eat large amounts of tissue when feeding on soybean, but are extremely damaging to the quality of the seed yield as they feed directly on green developing seeds leading to poorly marketable harvests. In addition to causing physical damage to the seed during feeding, the insects can also transmit microbial pathogens, leading to even greater yield loss. Conducting surveys of the insect intestinal microbiome can help identify possible pathogens, as well as detail what healthy stink bug digestive systems have in common.Methods: We used the conserved V4 515-806 region of the 16S rRNA gene to characterize the bacterial microbiome of the red-banded stink bug Piezodorus guildinii collected in Brazil and the United States, as well as the neotropical brown stink bug Euschistus heros collected in Brazil.Results: After quality filtering of the data, 192 samples were kept for analyses: 117 samples from P. guildinii covering three sites in Brazil and four sites in the US, and 75 samples for E. heros covering 10 sites in Brazil. The most interesting observations were that the diversity and abundance of some bacterial families were different in the different ecoregions of Brazil and the United States.Conclusions: Some families may be related to the better adaptation in some localities in provide nutrients, break down cellulose, detoxify phytochemicals, and degrade organic compounds, which makes it difficult to control these species.


2021 ◽  
Author(s):  
Matheus Sartori Moro ◽  
Xing Wu ◽  
Wei Wei ◽  
Lucas William Mendes ◽  
Clint Allen ◽  
...  

Abstract Background: Herbaceous insects are one of the main biological threats to crops. One such group of insects, stink bugs, do not eat large amounts of tissue when feeding on soybean, but are extremely damaging to the quality of the seed yield as they feed directly on green developing seeds leading to poorly marketable harvests. In addition to causing physical damage to the seed during feeding, the insects can also transmit microbial pathogens, leading to even greater yield loss. Conducting surveys of the insect intestinal microbiome can help identify possible pathogens, as well as detail what healthy stink bug digestive systems have in common. Methods: We used the conserved V4 515-806 region of the 16S rRNA gene to characterize the bacterial microbiome of the red-banded stink bug Piezodorus guildinii collected in Brazil and the United States, as well as the neotropical brown stink bug Euschistus heros collected in Brazil. Results: After quality filtering of the data, 192 samples were kept for analyses: 117 samples from P. guildinii covering three sites in Brazil and four sites in the US, and 75 samples for E. heros covering 10 sites in Brazil. The most interesting observations were that the diversity and abundance of some bacterial families were different in the different ecoregions of Brazil and the United States. Conclusions: Some families may be related to the better adaptation in some localities in provide nutrients, break down cellulose, detoxify phytochemicals, and degrade organic compounds, which makes it difficult to control these species.


2019 ◽  
Vol 113 (2) ◽  
pp. 1018-1022
Author(s):  
Jaclyn E Martin ◽  
Estephanie K Bernal Jimenez ◽  
Maribel G Cruz ◽  
Keyan Zhu-Salzman ◽  
Michael O Way ◽  
...  

Abstract Tagosodes orizicolus (Muir) is the most important pest of rice in Latin America. Besides causing direct damage called hopperburn from feeding on and ovipositing in rice leaves, this insect pest also transmits rice hoja blanca virus (RHBV, Family Phenuiviridae, Genus Tenuivirus) in a persistent-propagative manner. This pathosystem can cause up to 100% yield loss in Latin American rice fields. T. orizicolus and RHBV symptoms were detected in Louisiana, Mississippi, and Florida rice fields in the 1950s, 1960s, and 1980s. However, neither has been detected in the United States since. Two outbreaks of T. orizicolus on ratoon rice occurred in the fall of 2015 and 2018 in counties southwest and south of Houston, TX. Insects were collected from ratoon rice fields by sweep net methods. Insects from the 2015 and 2018 outbreaks were tested individually and in pools of 10, respectively, for RHBV infection and the cytochrome oxidase 1 (CO1) gene from Delphacidae. No insects were positive for RHBV, however, all samples yielded amplicons for the CO1 gene. Furthermore, the CO1 gene from five 2015 individuals was sequenced and found to have a 100% identity to the Fer26_Argentina and 99.81% identity to the DEL074 Venezuela isolates of T. orizicolus. Five new sequences from 2015 individuals have now been deposited in GenBank. It is imperative to stay up to date on the potential invasion and establishment of this exotic pest of rice in Texas and other rice-growing regions of the United States through continued monitoring and research.


Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 422 ◽  
Author(s):  
Alvaro Durand-Morat ◽  
Lawton Lanier Nalley

Red rice (O. sativa) is one the most prevalent and damaging weed problems in direct seeding rice systems worldwide and can cause significant losses in rice productivity and quality. Red rice has been a problem in the United States for decades, and it is a growing problem in Asia, where 90 percent of the global rice production occurs. Unlike for other crops, where genetically engineered (GE) herbicide tolerant varieties are available, to date, Clearfield (CL) and Provisia rice are the only technologies available to selectively control red rice using chemical herbicides in commercial rice fields. We develop a counterfactual scenario without CL rice and ascertain the yield and quality losses due to red rice infestation in the Mid-South of the United States. Our findings suggest that even with the higher costs of CL rice, relative to non-CL rice, that the returns are $0.15, $0.36, and $0.54 more for every dollar invested than non-CL rice with a light, moderate, and heavy initial red rice infestation rate, respectively. These results imply that the higher upfront costs for CL rice are offset by more than proportional higher profits relative to their non-CL rice counterparts.


Sign in / Sign up

Export Citation Format

Share Document