scholarly journals Red Tides

EDIS ◽  
2008 ◽  
Vol 2008 (3) ◽  
Author(s):  
Jorge R. Rey

ENY-851, a 5-page illustrated factsheet by Jorge R. Rey, explains what these “harmful algal blooms” are, what causes them, their impacts on marine ecosystems, human health, and coastal economies, and strategies for mitigation and control. Includes references. Published by UF Entomology and Nematology Department, February 2008.

EDIS ◽  
2008 ◽  
Vol 2008 (2) ◽  
Author(s):  
Jorge R. Rey

ENY-851S, a 5-page illustrated fact sheet by Jorge R. Rey, is the Spanish version of ENY-851, “Red Tides” (forthcoming). It explains what these “harmful algal blooms” are, what causes them, their impacts on marine ecosystems, human health, and coastal economies, and strategies for mitigation and control. Includes references.


2018 ◽  
Vol 3 (1) ◽  
pp. 40-55 ◽  
Author(s):  
Sangeeta Sonak ◽  
◽  
Kavita Patil ◽  
Prabha Devi ◽  
◽  
...  

Harmful Algae ◽  
2020 ◽  
Vol 98 ◽  
pp. 101901
Author(s):  
Nick Young ◽  
Richard A. Sharpe ◽  
Rosa Barciela ◽  
Gordon Nichols ◽  
Keith Davidson ◽  
...  

2020 ◽  
Vol 12 (2) ◽  
pp. 34
Author(s):  
Xiaofan Wang ◽  
Lingyu Xu

Harmful algal blooms (HABs) often cause great harm to fishery production and the safety of human lives. Therefore, the detection and prediction of HABs has become an important issue. Machine learning has been increasingly used to predict HABs at home and abroad. However, few of them can capture the sudden change of Chl-a in advance and handle the long-term dependencies appropriately. In order to address these challenges, the Long Short-Term Memory (LSTM) based spatial-temporal attentions model for Chlorophyll-a (Chl-a) concentration prediction is proposed, a model which can capture the correlation between various factors and Chl-a adaptively and catch dynamic temporal information from previous time intervals for making predictions. The model can also capture the stage of Chl-a when values soar as red tide breaks out in advance. Due to the instability of the current Chl-a concentration prediction model, the model is also applied to make a prediction about the forecast reliability, to have a basic understanding of the range and fluctuation of model errors and provide a reference to describe the range of marine disasters. The data used in the experiment is retrieved from Fujian Marine Forecasts Station from 2009 to 2011 and is combined into 8-dimension data. Results show that the proposed approach performs better than other Chl-a prediction algorithms (such as Attention LSTM and Seq2seq and back propagation). The result of error prediction also reveals that the error forecast method possesses established advantages for red tides prevention and control.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hyeong Kyu Kwon ◽  
Guebuem Kim ◽  
Yongjin Han ◽  
Junhyeong Seo ◽  
Weol Ae Lim ◽  
...  

Abstract It is a well held concept that the magnitude of red-tide occurrence is dependent on the amount of nutrient supply if the conditions are same for temperature, salinity, light, interspecific competition, etc. However, nutrient sources fueling dinoflagellate red-tides are difficult to identify since red tides usually occur under very low inorganic-nutrient conditions. In this study, we used short-lived Ra isotopes (223Ra and 224Ra) to trace the nutrient sources fueling initiation and spread of Cochlodinium polykrikoides blooms along the coast of Korea during the summers of 2014, 2016, and 2017. Horizontal and vertical distributions of nutrient concentrations correlated well with 224Ra activities in nutrient-source waters. The offshore red-tide areas showed high 224Ra activities and low-inorganic and high-organic nutrient concentrations, which are favorable for blooming C. polykrikoides in competition with diatoms. Based on Ra isotopes, the nutrients fueling red-tide initiation (southern coast of Korea) are found to be transported horizontally from inner-shore waters. However, the nutrients in the spread region (eastern coast of Korea), approximately 200 km from the initiation region, are supplied continuously from the subsurface layer by vertical mixing or upwelling. Our study highlights that short-lived Ra isotopes are excellent tracers of nutrients fueling harmful algal blooms in coastal waters.


2019 ◽  
Vol 17 (4) ◽  
pp. 499-516 ◽  
Author(s):  
Christian R. C. Kouakou ◽  
Thomas G. Poder

Abstract Harmful algal blooms (HABs) damage human activities and health. While there is wide literature on economic losses, little is known about the economic impact on human health. In this review, we systematically retrieved papers which presented health costs following exposure to HABs. A systematic review was conducted up to January 2019 in databases such as ScienceDirect and PubMed, and 16 studies were selected. Health costs included healthcare and medication expenses, loss of income due to illness, cost of pain and suffering, and cost of death. Two categories of illness (digestive and respiratory) were considered for health costs. For digestive illness cost, we found $86, $1,015 and $12,605, respectively, for mild, moderate and severe cases. For respiratory illness, costs were $86, $1,235 and $14,600, respectively, for mild, moderate and severe cases. We used Quality-Adjusted Life Years (QALYs) to access the loss of well-being due to illness caused by HABs. We found that breathing difficulty causes the most loss of QALYs, especially in children, with a loss of between 0.16 and 0.771 per child. Having gastroenteritis could cause a loss of between 2.2 and 7.1 QALYs per 1,000 children. Misleading symptoms of illness following exposure to HABs could cause bias in health costs estimations. This article has been made Open Access thanks to the generous support of a global network of libraries as part of the Knowledge Unlatched Select initiative.


2008 ◽  
Vol 7 (Suppl 2) ◽  
pp. S2 ◽  
Author(s):  
Deana L Erdner ◽  
Julianne Dyble ◽  
Michael L Parsons ◽  
Richard C Stevens ◽  
Katherine A Hubbard ◽  
...  

Author(s):  
Hamed Mohammed Al Gheilani ◽  
Kazumi Matsuoka ◽  
Abdulaziz Yahya AlKindi ◽  
Shehla Amer ◽  
Colin Waring

Red tide, one of the harmful algal blooms (HABs) is a natural ecological phenomenon and often this event is accompanied by severe impacts on coastal resources, local economies, and public health. The occurrence of red tides has become more frequent in Omani waters in recent years. Some of them caused fish kill, damaged fishery resources and mariculture, threatened the marine environment and the osmosis membranes of desalination plants. However, a number of them have been harmless. The most common dinoflagellate Noctiluca scintillans is associated with the red tide events in Omani waters. Toxic species like Karenia selliformis, Prorocentrum arabianum, and Trichodesmium erythraeum have also been reported recently. Although red tides in Oman have been considered a consequence of upwelling in the summer season (May to September), recent phytoplankton outbreaks in Oman are not restricted to summer. Frequent algal blooms have been reported during winter (December to March). HABs may have contributed to hypoxia and/or other negative ecological impacts. 


Sign in / Sign up

Export Citation Format

Share Document