scholarly journals Analyses on the effect of magnetic induction attenuation on the current distribution in a Faraday MHD generator

2013 ◽  
Vol 16 (2) ◽  
pp. 63-72
Author(s):  
Kien Chi Le

This paper examines the dependence of the attenuation of magnetic induction on the current distribution etc. in the exit regions of the Faraday type non-equilibrium plasma MHD generator by a two-dimensional calculation. The numerical analyses are made for an example of the cesium-seeded helium. As a result, a reasonable magnetic induction attenuation can make the distribution of current very uniform near the exit region of generator channel and has little influence on the current distribution in the middle part of generator, and the output electrodes can be used without great ballast resistors. Also the inside resistance of the exit region and the current concentration at the exit electrode edges decrease with the attenuation of magnetic flux density. By the author's examination, it is made clear that the exit electrodes of the diagonal Faraday type non-equilibrium plasma MHD generator should be arranged in the attenuation region of the magnetic induction, since arranging them in this region becomes useful for the improvement of the electrical parameters of generator.

2013 ◽  
Vol 2013 (0) ◽  
pp. 55-56
Author(s):  
Takuma Matsunaga ◽  
Masahito Iseki ◽  
Satoshi Nishida ◽  
Hiroshi Muta ◽  
Shizuma Kuribayashi

1979 ◽  
Vol 40 (C7) ◽  
pp. C7-871-C7-872
Author(s):  
E. F. Gippius ◽  
B. I. Iljukhin ◽  
V. N. Kolesnikov

2020 ◽  
pp. 3-7
Author(s):  
Vladlen Ya. Shifrin ◽  
Denis I. Belyakov ◽  
Alexander E. Shilov ◽  
Denis D. Kosenko

The results of works aimed at increasing the level of uniformity of measurements of the magnetic induction of a constant field – the basic value in the field of magnetic measurements. A set of equipment for reproducing a unit of magnetic induction of a constant field in the range of 1–25 mT was created and described. The inclusion of this complex in the State primary standard of units of magnetic induction, magnetic flux, magnetic moment and magnetic induction gradient GET 12-2011 will ensure the reproduction and direct transmission of the unit of permanent magnetic induction in the ranges of not only weak (10–3–1 mT), but medium (1–25 mT) and strong (0.025–1 T) magnetic fields. A quantum cesium magnetometer based on the resolved structure of cesium atoms was created to transmit the unit of magnetic induction to the region of medium fields. The procedure for calculating the frequency conversion coefficients to magnetic induction of the created quantum cesium magnetometer is described. The uncertainty budget for reproducing a unit of magnetic induction of a constant field using the created complex is estimated.


Sign in / Sign up

Export Citation Format

Share Document