scholarly journals Finite control set model predictive control to balance DC-link capacitor voltage for TType NPC inverter of grid-connected photovoltaic systems

2015 ◽  
Vol 18 (3) ◽  
pp. 5-17
Author(s):  
Dzung Quoc Phan ◽  
Tuyen Dinh Nguyen ◽  
Nhat Minh Nguyen

This paper proposes the Finite control set Model Predictive Control (FCS-MPC) with delay compensation for three-phase threelevel T-Type NPC inverter (T-Type NPC) of grid-connected photovoltaic systems (PV). The proposed FCS-MPC controls the objectives: current tracking control, DC-link capacitor voltage balance, the reduction of switching frequency to ensure issues of the power quality and improve the efficiency of grid-connected of PV system. The cost function of the proposed FCS-MPC uses the 27 possible switching states generated by TType NPC, the optimal switching state is selected in each sampling time that minimizes the cost function. The proposed FCS-MPC has also proposed the delay compensation with two-step prediction horizon at time k+2 to reduce the total harmonic distortion (THD) of the grid current. The proposed FCS-MPC is verified by using Matlab/Simulink.

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3467 ◽  
Author(s):  
Po Li ◽  
Ruiyu Li ◽  
Haifeng Feng

Inverters are commonly controlled to generate AC current and Total Harmonic Distortion (THD) is the core index in judging the control effect. In this paper, a THD oriented Finite Control Set Model Predictive Control (FCS MPC) scheme is proposed for the single-phase inverter, where a optimization problem is solved to obtain the switching law for realization. Different from the traditional cost function, which focuses on the instantaneous deviation of amplitude between predictive current and its reference, we redesign a cost function that is the linear combination of the current fundamental tracking error, instantaneous THD value and DC component in one fundamental cycle (for 50 Hz, it is 0.02 s). Iterative method is developed for rapid calculation of this cost function. By choosing a switching state from a FCS to minimize the cost function, a FCS MPC is finally constructed. Simulation results in Matlab/Simulink and experimental results on rapid control prototype platform show the effect of this method. Analyses illustrate that, by choosing suitable weight of the cost function, the performance of this THD oriented FCS MPC method is better than the traditional one.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2814
Author(s):  
Abdelsalam A. Ahmed ◽  
Abualkasim Bakeer ◽  
Hassan Haes Alhelou ◽  
Pierluigi Siano ◽  
Mahmoud A. Mossa

In this paper, a new modulated finite control set-model predictive control (FCS-MPC) methodology is proposed for a quasi-Z-source inverter (qZSI). The application of the qZSI in this paper is to drive the permanent magnet synchronous machine (PMSM). The proposed methodology calculates the optimal duration time (ODT) for the candidate vector from the switching patterns of the inverter after it is selected from the FCS-MPC algorithm. The control objective of the FCS-MPC are the three-phase currents of PMSM, when the motor speed is below or equal to the base speed. While at a speed beyond the based speed, the inductor current and capacitor voltage of the qZS network are added as control objectives. For each candidate optimal vector, the optimal time, which is a part of the sampling interval, is determined based on minimizing the ripples of the control objectives using a quadratic cost function. Then, the optimal vector is applied only to the inverter switches during the calculated ODT at the start of the sampling interval, while the zero vector is applied during the remaining part of the sampling interval. To reduce the calculation burden, the zero-state is excluded from the possible states of the inverter, and the sub-cost function definition is used for the inductor current regulation. The proposed modulated FCS-MPC is compared with the unmodulated FCS-MPC at the same parameters to handle a fair comparison. The simulation results based on the MATLAB/Simulink© software shows the superiority of the proposed algorithm compared to the unmodulated FCS-MPC in terms of a lower ripple in the inductor current and capacitor voltage, and a lower THD for the PMSM currents.


2020 ◽  
Vol 35 (10) ◽  
pp. 11193-11204 ◽  
Author(s):  
Yaofei Han ◽  
Chao Gong ◽  
Liming Yan ◽  
Huiqing Wen ◽  
Yangang Wang ◽  
...  

Author(s):  
Mai Van Chung ◽  
Do Tuan Anh ◽  
Phuong Vu

Model predictive control has been considered as a powerful alternative control method in power converters and electrical drives recently. This paper proposes a novel method for finite control set predictive control algorithm foran induction motor fed by 11-level cascaded H-Bridge converter. To deal with the high computation volume of MPC algorithm applied for CHBconverter, 7-adjacent vectors method is applied for calculating the desired voltage vector which minimizes the cost function. Moreover, by utilizingfield programmable gate array (FPGA) platform with its flexible structure,the total execution time reduces considerably so that the selected voltage vector can be applied immediately without delay compensation. This method improves the dynamic responses and steady-state performance of the system. Finally, experimental results verify the effectiveness of control design


2021 ◽  
Author(s):  
Jaksa Rubinic

This thesis proposes a new predictive control strategy to achieve fixed-switching frequency operation for a neutral-point clamped (NPC) inverter. The classical fixed-sampling frequency finite control-set model predictive control (FSF-FCS-MPC) operates with variable switching frequency, and thus produces spread-spectrum in an output current. The classical method also suffers from high computational complexity as the number of converter voltage levels increases. To overcome these issues, a high performance variable sampling frequency finite control-set model predictive control (VSF-FCS-MPC) strategy is proposed to control the power converters. The proposed control technique combines the advantages of space vector modulation (SVM) with a newly introduced mechanics to determine the appropriate sampling frequency. With these features the major requirements such as balancing of DC-link capacitor voltages, switching frequency minimization and common-mode voltage mitigation have been achieved with simultaneous elimination of even-order and inter-harmonics in the load current harmonic spectrum. The VSF-FCS-MPC strategy for current control with decoupled active/reactive power regulation of grid-connected multilevel converter was also analyzed. Moreover, a novel DC-link voltage balancing technique is presented which eliminates the need for balancing the capacitor voltages through cost function, and thus alleviates the weighting factor design. An introduction of SVM highly reduces the calculation time by considering only adjacent vectors, rendering FCS-MPC more suitable for implementation with multi-level converters with a number of voltage levels higher than three. Finally, the proposed control technique has been validated through simulation and experimental verification and a detailed comparison of VSF-FCS-MPC with FSF-FCS-MPC and SVM is presented


Solar Energy ◽  
2019 ◽  
Vol 189 ◽  
pp. 57-66 ◽  
Author(s):  
R.B.A. Cunha ◽  
R.S. Inomoto ◽  
J.A.T. Altuna ◽  
F.F. Costa ◽  
S.G. Di Santo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document