scholarly journals Total Harmonic Distortion Oriented Finite Control Set Model Predictive Control for Single-Phase Inverters

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3467 ◽  
Author(s):  
Po Li ◽  
Ruiyu Li ◽  
Haifeng Feng

Inverters are commonly controlled to generate AC current and Total Harmonic Distortion (THD) is the core index in judging the control effect. In this paper, a THD oriented Finite Control Set Model Predictive Control (FCS MPC) scheme is proposed for the single-phase inverter, where a optimization problem is solved to obtain the switching law for realization. Different from the traditional cost function, which focuses on the instantaneous deviation of amplitude between predictive current and its reference, we redesign a cost function that is the linear combination of the current fundamental tracking error, instantaneous THD value and DC component in one fundamental cycle (for 50 Hz, it is 0.02 s). Iterative method is developed for rapid calculation of this cost function. By choosing a switching state from a FCS to minimize the cost function, a FCS MPC is finally constructed. Simulation results in Matlab/Simulink and experimental results on rapid control prototype platform show the effect of this method. Analyses illustrate that, by choosing suitable weight of the cost function, the performance of this THD oriented FCS MPC method is better than the traditional one.

2015 ◽  
Vol 18 (3) ◽  
pp. 5-17
Author(s):  
Dzung Quoc Phan ◽  
Tuyen Dinh Nguyen ◽  
Nhat Minh Nguyen

This paper proposes the Finite control set Model Predictive Control (FCS-MPC) with delay compensation for three-phase threelevel T-Type NPC inverter (T-Type NPC) of grid-connected photovoltaic systems (PV). The proposed FCS-MPC controls the objectives: current tracking control, DC-link capacitor voltage balance, the reduction of switching frequency to ensure issues of the power quality and improve the efficiency of grid-connected of PV system. The cost function of the proposed FCS-MPC uses the 27 possible switching states generated by TType NPC, the optimal switching state is selected in each sampling time that minimizes the cost function. The proposed FCS-MPC has also proposed the delay compensation with two-step prediction horizon at time k+2 to reduce the total harmonic distortion (THD) of the grid current. The proposed FCS-MPC is verified by using Matlab/Simulink.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 234 ◽  
Author(s):  
GuangQing Bao ◽  
WuGang Qi ◽  
Ting He

A direct torque control (DTC) with a modified finite set model predictive strategy is proposed in this paper. The eight voltage space vectors of two-level inverters are taken as the finite control set and applied to the model predictive direct torque control of a permanent magnet synchronous motor (PMSM). The duty cycle of each voltage vector in the finite set can be estimated by a cost function, which is designed based on factors including the torque error, maximum torque per ampere (MTPA), and stator current constraints. Lyapunov control theory is introduced in the determination of the weight coefficients of the cost function to guarantee stability, and thus the optimal voltage vector reference value of the inverter is obtained. Compared with the conventional finite control set model predictive control (FCS-MPC) method, the torque ripple is reduced and the robustness of the system is clearly improved. Finally, the simulation and experimental results verify the effectiveness of the proposed control scheme.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jun Gao ◽  
Jie Zhang ◽  
Mengyang Fan ◽  
Zhiyuan Peng ◽  
Qinghong Chen ◽  
...  

Permanent magnet synchronous motors are widely used and have sufficient development prospects in the drive systems of electric vehicles. Traditional model predictive control (MPC) methods are shown to achieve good control performance by tracking the d- and q-axis current as well as limiting the current amplitude. However, the dynamic response performance and current harmonics during the switching process are not considered in the traditional MPC. Therefore, this paper proposes an MPC that can effectively improve control performance, where the switch transfer sequence in the switch constraint module is considered in the improved model. The state transition error is obtained from the switch constraint module according to the current switch state and the transition probability, after which, the integration into the cost function in which the driving error, tracking error, and constraint error are considered. A reinforcement learning (RL) algorithm is used to obtain the weight coefficient of the transition error term in the constraint module for automatically determining the best switch state for the next control period using the cost function. Simulation tests show that the total harmonic distortion of the phase current based on the improved MPC is 978.4%, less than 2843.0% of the traditional MPC method under 20 Nm at 1000 rpm. The torque response time of the motor is reduced by 0.026 s, whereas the simulation results indicate that the 100 km acceleration performance of an electric vehicle is improved by 9.9%.


2020 ◽  
Vol 35 (10) ◽  
pp. 10097-10108 ◽  
Author(s):  
Xu Zhang ◽  
Guojun Tan ◽  
Tao Xia ◽  
Qiang Wang ◽  
Xiang Wu

Sign in / Sign up

Export Citation Format

Share Document