Influence of Composition of Charge Materials of Flux-cored Wires on Mechanical Characteristics and Corrosion Resistance of Electric Arc Coatings

Author(s):  
Mykhajlo Student ◽  
◽  
Myroslav Golovchuk ◽  
Volodymyr Hvozdetskii ◽  
Halyna Veselivska ◽  
...  

The influence of charge materials of flux-cored wires on their mechanical characteristics, chemical microheterogeneity and corrosion resistance in an aqueous solution of 3% NaCl was established. It is shown that, in contrast to coatings made of solid wires, coatings sprayed using flux-cored wires (PO) have a high chemical heterogeneity. This is due to the fact that the droplets that disperse from the PD melt and form a coating have different chemical compositions. This is caused by incomplete fusion of the charge and steel shell at the ends of the PD during electric arc spraying of coatings. To reduce the chemical micro-heterogeneity, it is proposed to add powders of ferroalloys FeSi, FeMn and self-flux PG-10H-01 to the charge of powder wire containing chromium, boron, carbon-containing components (Cr, FH, PG-100, B4C, FCB) between the components of the charge, homogenize the melt of PD and, as a consequence, reduce the microheterogeneity of the coatings. The presence of chromium, ferrochrome, ferro-silicon and ferromanganese in the charge of PD 90Х17РГС and PD 75Х19Р3ГС2 determines the minimum chemical microheterogeneity of coatings from these wires and, as a result, ensures their high corrosion resistance, which is close to corrosion steel18. To increase the completeness of fusion of the components of the PD charge between itself and its steel shell, it is proposed to add to the PD charge powders of ferroalloys Fe-Mn, Fe-Si, which have a low melting point, able to interact with refractory components of the charge to form low-temperature eutectics. The addition of ferro-silicon, ferromanganese and self-flux alloy PN-10H-01 powders based on ferrochrobor and ferrochrome provided high hardness of electric arc coatings, low heterogeneity in terms of chromium content in coating lamellae and, as a consequence, high corrosion resistance.

Alloy Digest ◽  
1971 ◽  
Vol 20 (1) ◽  

Abstract BRIMCOLLOY is a copper-zinc tin alloy having high strength, spring temper, superior conductivity and high corrosion resistance. It is produced in three grades: BRIMCOLLOY 100, BRIMCOLLOY 200, and BRIMCOLLOY 300. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-225. Producer or source: Bridgeport Rolling Mills Company.


Alloy Digest ◽  
1956 ◽  
Vol 5 (12) ◽  

Abstract HASTELLOY ALLOY-F is a nickel-chromium-molybdenum-iron alloy having high corrosion resistance and possessing satisfactory hot and cold working characteristics. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-30. Producer or source: Haynes Stellite Company.


Alloy Digest ◽  
2014 ◽  
Vol 63 (11) ◽  

Abstract UGI 209 is an austenitic stainless steel with high corrosion resistance and a low magnetic permeability. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-1192. Producer or source: Schmolz + Bickenbach USA Inc..


1970 ◽  
Vol 21 ◽  
pp. 19-25 ◽  
Author(s):  
Jagadeesh Bhattarai

Nanocrystalline, single bcc solid solutions of W-Mo alloys have been successfully prepared by D. C. magnetron sputtering in a wide composition. The corrosion behavior of the sputter-deposited W-Mo alloys was studied. The W-Mo alloys showed significantly high corrosion resistance in 12 M HCl at 30o C. Their corrosion rates are about one and half orders of magnitude lower than that of sputter-deposited tungsten and lower than that of the sputter-deposited molybdenum even after prolonged immersion.DOI: 10.3126/jncs.v21i0.217Journal of Nepal Chemical Society Vol.21 2006 pp.19-25


2002 ◽  
Vol 43 (7) ◽  
pp. 1771-1773 ◽  
Author(s):  
Shujie Pang ◽  
Tao Zhang ◽  
Katsuhiko Asami ◽  
Akihisa Inoue

Sign in / Sign up

Export Citation Format

Share Document