cored wires
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 53)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Valeriy Bagrov

Despite a large number of studies in the field of assessing the causes of the formation of hot and cold cracks during surfacing of wear-resistant alloys, today the issues of working out the use of economically alloyed wear-resistant materials and the technique of their surfacing remain relevant. Goal: The purpose of this work is to study the effect of the structure and phase composition on the wear resistance of economically alloyed metastable and secondary hardening steels of the Cr-Mn-Ti system, as well as with additional alloying with Mo, B, V. Mechanized surfacing was carried out with flux cored wires AN-22 and AN-20 with the supply of a de-energized additive to the head of the weld pool, which reduces the content of sulfur and phosphorus, the specific consumption of electricity and increases the assimilation of alloying elements and the relative mass of the flux. Cladding by manual arc welding was carried out with coated electrodes with the addition of a depleted CaF2-coated flux-cored wire filler. When surfacing with a de-energized additive, the ratio of the filler to the main electrode, the relative mass was determined by β = m1 / m2 (m1, m2 are the mass of the filler and the electrode rod, respectively). Submerged arc surfacing was carried out in the following modes: IN = 300 ... 350 A, UD = 26 ... 30 V, q = 6 ... 10 kJ / cm, with manual surfacing - IN = 180 ... 220 A, UD = 25 ... Results: The studies carried out confirm the possibility of the formation of a “white band” both in alloys with a high concentration of austenitizing elements (Mn, C, Ni) and when alloying carbide-forming elements with a relatively low affinity for carbon (V, Mo). The indicators of resistance to cracking (КС, j-integral, δС), and, consequently, resistance to wear of secondary hardening steels are higher than those of metastable and tool steels.


2021 ◽  
Vol 5 (2) ◽  
Author(s):  
Khaled Elsayed ◽  
Aleksandr Razmyshlyaev ◽  
Marina Ahieieva ◽  
Oleksandr Bilyk

Problematic. When surfacing and welding with the action of a longitudinal magnetic field (LMF), the productivity of melting of the electrode metal increases, it is possible to control the geometric dimensions of the cross-section of the surfaced beads and welds, the structure of the surfaced metal and welds is refined, the hardness increases, the strength and ductility of the weld metal increases, and the resistance of the welds hot cracking. Research objective. Analyze the literature data on the effect of LMF on the efficiency of the arc surfacing process of worn-out surfaces of parts and structures, taking into account the magnetic properties of electrode wires and base metal to increase the efficiency of this process. Realization technique. Experiments were performed on submerged-arc surfacing with Sv-08A wire with a diameter of 5 mm with the action of an alternating LMF. Investigated the effect of the LMF frequency on the depth of penetration of the base metal and the width of the surfaced beads. The results of research. It has been established that at frequencies of the LMF within the range f = 5...50 Hz, the penetration depth is less, and the width of the bead is greater than in surfacing without the action of the LMF. In the future, it is necessary to carry out studies on the effect of LMF during surfacing with flux-cored wires and strips on the metal structure of the surfaced beads and their service characteristics. Conclusions. It has been established that for grinding the structural components of the metal surfaced with the action of LMF, it is necessary to ensure effective mixing of the liquid metal in the weld pool, that is, along its entire length. In this case, it is necessary to ensure the optimal parameters of the control magnetic fields. There is no theory that would explain the mechanism of refinement of the weld structure during arc surfacing with the action of LMF, and the existing views on this mechanism are contradictory. The data presented in the literature refer to the process of arc surfacing and welding with solid wire, there are no data on surfacing using flux-cored wires and strip electrodes.


Author(s):  
Hongyu Liu ◽  
Tao Wang ◽  
Xuefeng Guo ◽  
Feng Feng ◽  
Yunhai Su

Abstract In order to develop the Fe-Cr-Ni-Mo-Mn-N corrosion resistant alloys, analyze the influence of nitrogen on the corrosion resistance of Fe-Cr-Ni-Mo-Mn alloy, adjust the N content in the alloy system, and Flux cored wires with different N content were prepared. They were surfaced on low carbon steel by MIG welding. The phase composition, microstructure and corrosion resistance of the cladding metal were analyzed to studied the effect of N content on the structure and performance of the surfacing metal. The results show that the addition of nitrogen does not change the matrix structure (which is Fe-Ni-Cr austenite), but with the increase of nitrogen content, the precipitation of nitrides ( Cr2(C,N) and BN ) is


Author(s):  
Elin M. Westin ◽  
S. McCarrick ◽  
L. Laundry-Mottiar ◽  
Z. Wei ◽  
M. C. Biesinger ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6033
Author(s):  
Subhash Das ◽  
Jay Vora ◽  
Vivek Patel ◽  
Joel Anderrson ◽  
Danil Yurievich Pimenov ◽  
...  

The prospect of using metal-cored wires instead of solid wires during gas metal arc welding (GMAW) of 2.25 Cr–1.0 Mo steels embraces several challenges. The in-service requirements for the equipment made up of these steels are stringent. The major challenge faced by the manufacturers is temper embrittlement. In the current study, the temper embrittlement susceptibility of the welded joint was ascertained by subjecting it to step cooling heat treatment. A 25 mm thick 2.25 Cr–1.0 Mo weld joint was prepared using a combination of the regulated metal deposition (RMD) and GMAW processes incorporating metal-cored wires. After welding the plates were exposed to post-weld heat treatment followed by a rigorous step cooling heat treatment prescribed by API standards. The temper embrittlement susceptibility of the weld joint was ascertained by Bruscato X-factor as well as by formulating ductile-to-brittle transition temperature (DBTT) curves by carrying out the impact toughness testing at various temperatures. Detailed microscopy and hardness studies were also carried out. It was established from the study that the X-factor value for the welded joint was 15.4. The DBTT for the weld joint was found to occur at −37 °C which was well below 10 °C. Optical microscopy and scanning electron microscopy indicated the presence of carbides and the energy dispersive X-ray spectrometry studies indicated the presence of chromium and manganese-rich carbides along with the presence of sulfur near the grain boundaries. This study establishes a base for the usage of metal-cored wires particularly in high temperature and pressure application of Cr–Mo steels.


Author(s):  
E. M. Westin ◽  
S. McCarrick ◽  
L. Laundry-Mottiar ◽  
Z. Wei ◽  
R. Wagner ◽  
...  

Author(s):  
M. K. Isaev ◽  
V. A. Bigeev ◽  
A. B. Sychkov ◽  
A. M/ Stolyarov

Metal processing in ladle by calcium-containing cored wires is one of the most spread methods of ladle treatment and modifying. Results of analysis of efficiency induces of existing cored wires application depending on their diameter, wall thickness and filling coefficient presented. It was shown that the basic efficiency index of a cored wire application – recovery coefficient – depending on wire quality (homogeneity of filling by calcium along the wire length), wire grade, conditions of its injection into liquid steel and other parameters can vary within a range from 50 to 95%. Reasons of unsatisfactory calcium recovery at usage of calcium-containing wires of 14–15 mm diameter with steel shell 0.4 mm thick and filling of mechanical mixture of steel shots and metallic calcium in various proportions was considered. Advantages of the modern calcium-containing cored wire with thicker wall were highlighted, including their higher wire rigidity and stability of its supply by a wire feeder into liquid steel. It was established that calcium content in a cored wire at the level of 100 g/m was the most effective composition. It was noted that increase of speed of cored wire feeding into steel will result in an increase of calcium recovery and in a decrease of probability of metal splashing out the steel ladle.


Sign in / Sign up

Export Citation Format

Share Document