scholarly journals Recovery of Lignocellulolytic Enzymes and Valorization of Spent Mushroom Substrate

2021 ◽  
Vol 20 (1) ◽  
pp. 1-9
Author(s):  
Anumeha Vats ◽  
◽  
Anuj Sangam Kurade ◽  
Srikanth Mutnuri ◽  
◽  
...  

Spent Mushroom Substrate (SMS) comprises sugarcane bagasse, coconut coir, chicken manure, and paddy straw; inoculated with and farmed for Agaricus bisporus. At present, the waste generation at a mushroom cultivation plant in Goa is 40 tons/day (15,000 tons annually). Valorization of this waste has been explored in terms of extracting lignocellulolytic enzymes and briquette production. SMS was screened for the presence of lignocellulolytic enzymes and then was used to make briquettes. The enzymes found in SMS were cellulase and laccase, which were further concentrated via tangential flow filtration (TFF). Enzyme activity for Cellulase increased by four-fold (from 255.34±1.30 U/mL increased to 1022.21±4.84 U/mL) and Laccase increased by three-fold (from 4.83±0.02 U/mL to 13.21±0.05 U/mL). The concentrated enzyme cocktail was used to decolorize congo red dye. After only eight hours of enzymatic treatment at pH 4.8 on congo red, approx. 40-49% decolorization was accomplished. The color removal was due to the presence of the laccase enzyme. After enzyme extraction, all the residual SMS was utilized to generate briquettes with an initial reduction in its moisture content from 50% to 10%. The resulting briquette gave a Gross Calorific Value of 4,143 Kcal/kg with 12.60% ash content. Thus, SMS proves to be a valuable source for recovering enzymes and a cost-effective material for briquette production rather than going into landfills.

2021 ◽  
Vol 65 (4) ◽  
Author(s):  
Shumaila Kiran ◽  
Muhammad Asim Rafique ◽  
Asma Ashraf ◽  
Tahir Farooq ◽  
Sarosh Iqbal ◽  
...  

Abstract. Biosorption is a cost-effective excellent tool for removing problematic dyes. The present work was focused on the utilization of Citrus paradise (grapefruit) peels aqueous extract for synthesis of nickel nanoparticles. The prepared nanoparticles were characterized by SEM and were used for the remediation of congo red direct dye. The decolorization of Congo Red direct dye was measured using UV/Visible spectrophotometer following the optimization of experimental factors. Maximum decolorization was observed at a dye concentration of 0.02 %, pH 6, at 50 °C temperature, and catalyst dose was 0.01 g/L. TOC and COD values were found to be 79.89 % and 78.23 %. Agriculrural waste could be used for the remediation of other synthetic dyes as well; hence helps in cleaning our natural environment.   Resumen. La biosorción es una excelente herramienta rentable para eliminar colorantes problemáticos. El presente trabajo se centró en la utilización del extracto de cáscaras de Citrus paradise (pomelo) para la síntesis de nanopartículas de níquel. Las nanopartículas preparadas se caracterizaron por microscopía electrónica de barrido (MEB) y se utilizaron para la remediación del colorante directo rojo de Congo. La decoloración del colorante directo Rojo Congo se midió mediante espectrometría siguiendo la optimización de factores experimentales. Se observó una decoloración máxima a una concentración de colorante de 0.02 %, pH 6, y una temperatura de 50 °C; la dosis del catalizador fue de 0.01 g/L. Se determinó que los valores de TOC y DQO eran 79.89 % y 78.23 %, respectivamente. Los residuos agrícolas también podrían utilizarse para la remediación de otros tintes sintéticos y con ello ayudar a limpiar nuestro entorno natural.


2017 ◽  
Vol 36 (3-4) ◽  
pp. 872-887 ◽  
Author(s):  
Luying Ma ◽  
Guihua Zhao ◽  
Yaoyao Fang ◽  
Wei Dai ◽  
Na Ma

Herein, we demonstrate a simple and cost-effective method to prepare the new hierarchically Ni-doped porous CaCO3 monoliths in a large scale by mineralizing finger citron residue templates with a calcium acetate precursor. The morphology, microstructure, and element composition of as-prepared adsorbents are characterized by Scanning Electron Microscope (SEM), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), and N2 adsorption, respectively. Adsorption performance of anionic dye Congo red was investigated in a batch experiment. The results showed that pseudo-second-order kinetic model and Langmuir adsorption isotherm matched well for the Congo red adsorption. Compared with previously reported adsorbents, due to positive and negative charge effect between Congo red and Ni, Ni-doped porous CaCO3 monoliths demonstrated a superior Congo red dye adsorption capability. The results of the present study substantiate that Ni-doped porous CaCO3 monoliths is a promising adsorbent for the removal of the anionic dyes from wastewater.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (03) ◽  
pp. 157-164 ◽  
Author(s):  
Shengdan Wang ◽  
Wenhua Gao ◽  
Kefu Chen ◽  
Jinsong Zeng ◽  
Jun Xu ◽  
...  

Cellulose nanofibrils (CNF) were prepared by cellulase in conjunction with mechanical disintegration from the bleached softwood kraft pulp and labelled by Congo red dye. The labelled CNF were used to investigate the retention and distribution of CNF in paper handsheets. The retention of the labelled CNF was obtained by measuring the absorbance of white water using an ultraviolet-visible spectrophotometer. The results showed that this method for measuring the retention was rapid, feasible, and sensitive, owing to the high correlation coefficient R2 (0.9993) of the standard curve. The labelled CNF showed even distribution in paper handsheets. The colorimetric values of paper handsheets were explored with a residual ink analyzer.


2020 ◽  
Vol 18 (1) ◽  
pp. 287-294
Author(s):  
Harsasi Setyawati ◽  
Handoko Darmokoesoemo ◽  
Irmina Kris Murwani ◽  
Ahmadi Jaya Permana ◽  
Faidur Rochman

AbstractThe demands of ecofriendly technologies to produce a reliable supply of renewable energy on a large scale remains a challenge. A solar cell based on DSSC (Dye-Sensitized Solar Cell) technology is environmentally friendly and holds the promise of a high efficiency in converting sunlight into electricity. This manuscript describes the development of a light harvester system as a main part of a DSSC. Congo red dye has been functionalized with metals (Fe, Co, Ni), forming a series of complexes that serve as a novel light harvester on the solar cell. Metal-congo red complexes have been characterized by UV-VIS and FTIR spectroscopy, and elemental analyses. The performance of metal complexes in capturing photons from sunlight has been investigated in a solar cell device. The incorporation of metals to congo red successfully improved of the congo red efficiency as follows: Fe(II)-congo red, Co(II)-congo red and Ni(II)-congo red had efficiencies of 8.17%, 6.13% and 2.65%, respectively. This research also discusses the effect of metal ions on the ability of congo red to capture energy from sunlight.


2021 ◽  
Vol 765 (1) ◽  
pp. 012089
Author(s):  
R Taufik ◽  
M Mohamad ◽  
R Wannahari ◽  
N F Shoparwe ◽  
WHW Osman ◽  
...  

2021 ◽  
pp. 101183
Author(s):  
Munazza Maqbool ◽  
Sana Sadaf ◽  
Haq N. Bhatti ◽  
Sehrish Rehmat ◽  
Abida Kausar ◽  
...  

2021 ◽  
Vol 22 ◽  
pp. 101402 ◽  
Author(s):  
Saraf Khan ◽  
Adnan Khan ◽  
Nisar Ali ◽  
Shehzad Ahmad ◽  
Waqar Ahmad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document