COMPARATIVE STUDY OF ANTI-INFLAMMATORY EFFECT OF ACECLOFENAC AND DICLOFENAC ON HUMAN BY CLINICAL TRIAL

Author(s):  
Amit Kumar Jha ◽  
Amit Kumar Jha

Various exogenous and endogenous stimuli incite a complex reaction in vascularized connective tissue called inflammation. Non sterodial antiinflammatory drugs are used to reduce inflammation Preferential COX-2 inhibitors namely diclofenac and aceclofenac was taken for my present work and anti inflammatory effect was compared with control and with each other. Student-t-test-was done to compare result. It was found that inflammation varied significantly across the three groups (P=000) compared to control, in~lammation was less in both diclofenac and aceclofenac (P=00). Reduction of inflammation with diclofenac was less, in comparision to aceclofenac at end. Aceclofenac is more efficacious than diclofenac. Keywords: Aceclofenac, diclofenac, Anti inflammatory effect

Author(s):  
Amit Kumar Jha ◽  
Raj Ranjan Prasad

Non steroidal anti-inflammatory drugs are non-narcotic or non opioid analgesics.Various exogenous and endogenous stimuli incite a complex reaction in vascularized connective tissue called inflammation. Preferential COX-2 inhibitors named diclofenac and Selective COX-2 inhibitor named etoricoxib was taken for my present work and anti inflammatory effect was compared with control and with each other. Student-t-test-was done to compare result. It was found that inflammation varied significantly across the three groups (P=.000) Compared to control, inflammation was less in both diclofenac and etoricoxib (P=.00). Reduction of inflammation with diclofenac was less, in comparison to etoricoxib at end. Etoricoxib is more efficacious than diclofenac. Keywords: Etoricoxib, Diclofenac, Anti inflammatory effect.


2021 ◽  
Vol 28 ◽  
Author(s):  
Josiane Viana Cruz ◽  
Joaquín María Campos Rosa ◽  
Njogu Mark Kimani ◽  
Silvana Giuliatti ◽  
Cleydson Breno Rodrigues dos Santos

: This article presents a simplified view of celecoxib as a potential inhibitor in the treatment of inflammatory diseases. The enzyme cyclooxygenase (COX) has, predominantly, two isoforms called cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2). The former plays a constitutive role that is related to homeostatic effects in renal and platelets, while the latter is mainly responsible for induction of inflammatory effects. Since COX-2 plays an important role in the pathogenesis of inflammatory diseases, it has been signaled as a target for the planning of anti-inflammatory intermediates. Many inhibitors developed and planned for COX-2 inhibition have presented side effects to humans, mainly in the gastrointestinal and/or cardiovascular tract. Therefore, it is necessary to design new potential COX-2 inhibitors, which are relatively safe and without side effects. To this end, of the generation of non-steroidal anti-inflammatory drugs from “coxibs”, celecoxib is the only potent selective COX-2 inhibitor that is still commercially available. Thus, the compound celecoxib became a commercial prototype inhibitor for the development of anti-inflammatory agents for COX-2 enzyme. In this review, we provide highlights where such inhibition should provide a structural basis for the design of promising new non-steroidal anti-inflammatory drugs (NSAIDs) which act as COX-2 inhibitors with lesser side effects on the human body.


Author(s):  
Mustafa H. Ali Alsafi ◽  
Muthanna S. Farhan

Mefenamic acid (MA) is one of the non-steroidal anti-inflammatory drugs, it is widely used probably due to having both anti-inflammatory and analgesic activity, the main side effects of mefenamic acid include gastrointestinal tract (GIT) disturbance mainly diarrhea, peptic ulceration, and gastric bleeding. The analgesic effects of NSAIDs are probably linked to COX-2 inhibition, while COX-1 inhibition is the major cause of this classic adverse effects. Introduction of thiazolidinone may lead to the increase in the bulkiness leads to the preferential inhibition of COX-2 rather than COX-1 enzyme. The study aimed to synthesize derivatives of mefenamic acid with more potency and to decrease the drug's potential side effects, new series of 4-thiazolidinone derivatives of mefenamic acid were synthesized IVa-g. The synthetic procedures for target compounds and their intermediates are designed to be as follows: acylation of secondary amine of mefenamic acid by chloroacetylchloride to produce compound (I), then reaction between compound (I) and hydrazine hydrate to form hydrazine derivative of mefenamic acid (compound II). After that, Schiff base formation by addition of seven benzaldehyde derivatives and finally, cyclization in presence of thioglycolic acid to form 4-thiazolidinone heterocyclic ring. The characterization of the titled compounds has been established on the basis of their spectral FTIR, 1HNMR data, and by measurements of their physical properties. In vivo acute anti-inflammatory effect of the synthesized compounds was evaluated in rats using egg-white induced edema model of inflammation. The tested compounds and the reference drug produced significant reduction of paw edema with respect to the effect of dimethyl sulfoxide 10%v/v (control group). Compound IVe showed more potent effect than mefenamic acid at 240-300 min, while at time 300 min, compounds IVa and IVd exhibit more potent anti-inflammatory effect than mefenamic acid (50mg/kg, i.p.) as they reduced paw edema significantly more than mefenamic acid at mentioned intervals (p<0.05) . On the other hand compound IVc exhibited lower anti-inflammatory effect.


2021 ◽  
Vol 18 ◽  
Author(s):  
Iqra Hamid ◽  
Humaira Nadeem ◽  
Sameen Fatima Ansari ◽  
Sonia Khiljee ◽  
Inzamam Abbasi ◽  
...  

Background: Non-steroidal anti-inflammatory drugs (NSAIDs) are the commonly used therapeutic interventions of inflammation and pain that competitively inhibit the cyclooxygenase (COX) enzymes. Several side effects like gastrointestinal and renal toxicities are associated with the use of these drugs. The therapeutic anti-inflammatory benefits of NSAIDs are produced by the inhibition of COX-2 enzymes, while undesirable side effects arise from the inhibition of COX-1 enzymes. Objectives: In the present study, a new series of 2-substituted benzoxazole derivatives 2(a-f) and 3(a-e) were synthesized in our lab as potent anti-inflammatory agents with outstanding gastro-protective potential. The new analogs 2(a-f) and 3(a-e) were designed depending upon the literature review to serve as ligands for the development of selective COX-2 inhibitors. Methods: The synthesized analogs were characterized using different spectroscopic techniques (FTIR, 1HNMR, 13CNMR) and elemental analysis. All synthesized compounds were screened for their binding potential in the protein pocket of COX-2 and evaluated for their anti-inflammatory potential in animals using the carrageenan-induced paw edema method. Further 5 compounds were selected to assess the in vivo anti-ulcerogenic activity in an ethanol-induced anti-ulcer rat model. Results: Five compounds (2a, 2b, 3a, 3b and 3c) exhibited potent anti-inflammatory activity and significant binding potential in the COX-2 protein pocket. Similarly, these five compounds demonstrated a significant gastro-protective effect (p<0.01) in comparison to the standard drug, Omeprazole. Conclusion: Depending upon our results, we hypothesize that 2-substituted benzoxazole derivatives have excellent potential to serve as candidates for the development of selective anti-inflammatory agents (COX-2 inhibitors). However, further assessments are required to delineate their underlying mechanisms.


2020 ◽  
pp. 104555
Author(s):  
Abdallah M. Alfayomy ◽  
Salah A. Abdel-Aziz ◽  
Adel A. Marzouk ◽  
Montaser Sh. A. Shaykoon ◽  
Atsushi Narumi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document