scholarly journals Tracking the Transplanted Neurosphere in Retinal Pigment Epithelium Degeneration Model

2021 ◽  
Vol 12 (4) ◽  
pp. 523-532
Author(s):  
Hamid Aboutaleb Kadkhodaeian1 ◽  
◽  
Amir Salati ◽  
Mojtaba Ansari ◽  
Vajihe Taghdiri Nooshabadi ◽  
...  

Introduction: Retinal Pigment Epithelium (RPE) layer deterioration is a leading cause of Age-Related Macular Degeneration (AMD), i.e., the most significant reason for irreversible blindness. The present study aimed to track the Neurosphere-Derived (NS) from Bone Marrow Stromal Stem Cells (BMSCs) grafted into the sub-retinal space (destruction of the RPE layer by sodium iodate). Methods: RPE degeneration model was performed using the injection of 5% sodium iodate performed in the retro-orbital sinus of Wistar rats. BMSCs were extracted from the examined rat femur and induced into NS, using EGF, bFGF, and B27. BrdU-NS labeled cells were transplanted into the sub-retinal space. For detecting BMSCs and NS markers, immunocytochemistry was performed. Moreover, immunohistochemical was conducted for tracking the transplanted cells in the RPE and sensory retina. Results: The immunocytochemistry of BMSCs cells displayed the expression of mesenchymal stem cells markers (CD90; 99%±1), CD166 (98%±2), CD44 (99%±1). Additionally, the expression of neural lineage markers in NS, such as SOX2, OCT4, Nanog, Nestin, and Neurofilaments (68, 160, 200) revealed the differentiation from BMSCs. Tracking BrdU-NS labeled suggested these aggregations in most layers of the retina. Conclusion: Our study data indicated that BMSCs derived neurosphere had the potential to migrate in injured retinal and integrate into the neurosensory retina. These data can be useful in finding safe cells for replacement therapy in AMD.

Author(s):  
Saleheh Shahmoradi ◽  
Fatemeh Yazdian ◽  
Amin Janghorbani ◽  
Leila Satarian ◽  
Farnaz Behroozi ◽  
...  

Introduction: Age-related macular degeneration (AMD) is one of the retina diseases in which retinal pigment epithelium cells are degraded and lead to blindness. Available treatments only slow down the progression of it. In this study, human embryonic stem cells (hESCs) differentiated into retinal pigment epithelium cells were cultured on a polycaprolactone scaffold. Methods: The optimization of the diameter of the produced scaffolds by electrospinning method was done using the fuzzy method for the first time. To improve cell adhesion and proliferation, related parameters to alkaline hydrolysis method were optimized and hydrophobic surface of scaffold was modified. After in vitro analysis, cells were cultured on different groups of scaffolds. In vivo analyses were done and cells culture on scaffolds observed. Results: The optimal parameters for the scaffold based on the fuzzy model were 18.1 kV for voltage, 0.07 g / ml for solution concentration and 115 nm for scaffold diameter, respectively. The immersion time of the scaffold in alkaline solution and concentration of solution were measured 97 min and 3.7 M, respectively. The treated scaffold had a higher degradation rate and water adsorption. MTT-Assay results showed that scaffolds with modified surfaces had a higher amount of cell viability and proliferation after 7 days. SEM image results confirmed this finding after almost two months. Additionally, the results of ICC test showed that after passing this time, cells kept their RPE and epithelium. Conclusion: Based on the results, the hydrolyzed scaffold is a suitable substrate for cell proliferation and can be a good option for AMD treatment.


Marine Drugs ◽  
2020 ◽  
Vol 19 (1) ◽  
pp. 1
Author(s):  
Peeraporn Varinthra ◽  
Shun-Ping Huang ◽  
Supin Chompoopong ◽  
Zhi-Hong Wen ◽  
Ingrid Y. Liu

Age-related macular degeneration (AMD) is a progressive eye disease that causes irreversible impairment of central vision, and effective treatment is not yet available. Extracellular accumulation of amyloid-beta (Aβ) in drusen that lie under the retinal pigment epithelium (RPE) has been reported as one of the early signs of AMD and was found in more than 60% of Alzheimer’s disease (AD) patients. Extracellular deposition of Aβ can induce the expression of inflammatory cytokines such as IL-1β, TNF-α, COX-2, and iNOS in RPE cells. Thus, finding a compound that can effectively reduce the inflammatory response may help the treatment of AMD. In this research, we investigated the anti-inflammatory effect of the coral-derived compound 4-(phenylsulfanyl) butan-2-one (4-PSB-2) on Aβ1-42 oligomer (oAβ1-42) added to the human adult retinal pigment epithelial cell line (ARPE-19). Our results demonstrated that 4-PSB-2 can decrease the elevated expressions of TNF-α, COX-2, and iNOS via NF-κB signaling in ARPE-19 cells treated with oAβ1-42 without causing any cytotoxicity or notable side effects. This study suggests that 4-PSB-2 is a promising drug candidate for attenuation of AMD.


2021 ◽  
Vol 22 (16) ◽  
pp. 8387
Author(s):  
Alexa Klettner ◽  
Johann Roider

(1) Background: Inflammation is a major pathomechanism in the development and progression of age-related macular degeneration (AMD). The retinal pigment epithelium (RPE) may contribute to retinal inflammation via activation of its Toll-like receptors (TLR). TLR are pattern recognition receptors that detect the pathogen- or danger-associated molecular pattern. The involvement of TLR activation in AMD is so far not understood. (2) Methods: We performed a systematic literature research, consulting the National Library of Medicine (PubMed). (3) Results: We identified 106 studies, of which 54 were included in this review. Based on these studies, the current status of TLR in AMD, the effects of TLR in RPE activation and of the interaction of TLR activated RPE with monocytic cells are given, and the potential of TLR activation in RPE as part of the AMD development is discussed. (4) Conclusion: The activation of TLR2, -3, and -4 induces a profound pro-inflammatory response in the RPE that may contribute to (long-term) inflammation by induction of pro-inflammatory cytokines, reducing RPE function and causing RPE cell degeneration, thereby potentially constantly providing new TLR ligands, which could perpetuate and, in the long run, exacerbate the inflammatory response, which may contribute to AMD development. Furthermore, the combined activation of RPE and microglia may exacerbate neurotoxic effects.


Sign in / Sign up

Export Citation Format

Share Document