scholarly journals Human Olfactory Ectomesenchymal Stem Cells (OE-MSCs) Display Schwann Cell-Like Phenotypes and Promote Neurite Outgrowth In vitro

Author(s):  
Maedeh Entezari ◽  
◽  
Mehrdad Bakhtiari ◽  
Fatemeh Moradi ◽  
Masoud Mozafari ◽  
...  

Strategies of Schwann cell (SC) transplantation for regeneration of peripheral nerve injury involve many limitations. Stem cells can be used as alternative cell source for differentiation into Schwann cells. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ectomesenchymal stem cells (OE-MSCs) derived from neural crest can spontaneously differentiate into SC lineage. OE-MSCs were isolated from human nasal mucosa and characterized by the mesenchymal and neural crest markers. The cells were cultured in glial growth factors-free medium and further investigated in terms of the phenotypic and functional properties. Immunocytochemical staining and real-time PCR analysis indicated that the cultured OE-MSCs expressed SCs markers, SOX10, p75, S100, GFAP and MBP, differentiation indicative. It was found that the cells could secrete neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Furthermore, after co-cultured with PC12, the mean neurite length was enhanced by OE-MSCs. The findings indicated that OE-MSCs could be differentiated spontaneously into SC-like phenotypes, suggesting their applications for transplantation in peripheral nerve injuries.Strategies of Schwann cell (SC) transplantation for regeneration of peripheral nerve injury involve many limitations. Stem cells can be used as alternative cell source for differentiation into Schwann cells. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ectomesenchymal stem cells (OE-MSCs) derived from neural crest can spontaneously differentiate into SC lineage. OE-MSCs were isolated from human nasal mucosa and characterized by the mesenchymal and neural crest markers. The cells were cultured in glial growth factors-free medium and further investigated in terms of the phenotypic and functional properties. Immunocytochemical staining and real-time PCR analysis indicated that the cultured OE-MSCs expressed SCs markers, SOX10, p75, S100, GFAP and MBP, differentiation indicative. It was found that the cells could secrete neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Furthermore, after co-cultured with PC12, the mean neurite length was enhanced by OE-MSCs. The findings indicated that OE-MSCs could be differentiated spontaneously into SC-like phenotypes, suggesting their applications for transplantation in peripheral nerve injuries.

2009 ◽  
Vol 55 (3) ◽  
pp. 283-292 ◽  
Author(s):  
Takeshi TERAMURA ◽  
Yuta ONODERA ◽  
Hideki MURAKAMI ◽  
Syunsuke ITO ◽  
Toshihiro MIHARA ◽  
...  

2021 ◽  
Vol 42 ◽  
pp. 401-414
Author(s):  
C Voskamp ◽  
◽  
LA Anderson ◽  
WJLM Koevoet ◽  
S Barnhoorn ◽  
...  

Mesenchymal stem cells (MSCs) are promising cells for regenerative medicine therapies because they can differentiate towards multiple cell lineages. However, the occurrence of cellular senescence and the acquiring of the senescence-associated secretory phenotype (SASP) limit their clinical use. Since the transcription factor TWIST1 influences expansion of MSCs, its role in regulating cellular senescence was investigated. The present study demonstrated that silencing of TWIST1 in MSCs increased the occurrence of senescence, characterised by a SASP profile different from irradiation-induced senescent MSCs. Knowing that senescence alters cellular metabolism, cellular bioenergetics was monitored by using the Seahorse XF apparatus. Both TWIST1-silencing-induced and irradiation-induced senescent MSCs had a higher oxygen consumption rate compared to control MSCs, while TWIST1-silencing-induced senescent MSCs had a low extracellular acidification rate compared to irradiation-induced senescent MSCs. Overall, data indicated how TWIST1 regulation influenced senescence in MSCs and that TWIST1 silencing-induced senescence was characterised by a specific SASP profile and metabolic state.


2020 ◽  
Vol 15 (3) ◽  
pp. 373 ◽  
Author(s):  
Gianluca Carnevale ◽  
Alessandra Pisciotta ◽  
Laura Bertoni ◽  
Antonio Vallarola ◽  
Giulia Bertani ◽  
...  

Stem Cells ◽  
2001 ◽  
Vol 19 (5) ◽  
pp. 408-418 ◽  
Author(s):  
Nicola Tremain ◽  
Jarmo Korkko ◽  
David Ibberson ◽  
Gene C. Kopen ◽  
Carla DiGirolamo ◽  
...  

2013 ◽  
Vol 9 (8) ◽  
pp. 7727-7736 ◽  
Author(s):  
Yong-Juan Ren ◽  
Shuming Zhang ◽  
Ruifa Mi ◽  
Qiuyue Liu ◽  
Xianmin Zeng ◽  
...  

2019 ◽  
Vol 20 (7) ◽  
pp. 1651 ◽  
Author(s):  
Emi Inada ◽  
Issei Saitoh ◽  
Naoko Kubota ◽  
Yoko Iwase ◽  
Tomoya Murakami ◽  
...  

Stage-specific embryonic antigen 1 (SSEA-1) is an antigenic epitope (also called CD15 antigen) defined as a Lewis X carbohydrate structure and known to be expressed in murine embryonal carcinoma cells, mouse embryonic stem cells (ESCs), and murine and human germ cells, but not human ESCs/induced pluripotent stem cells (iPSCs). It is produced by α1,3-fucosyltransferase IX gene (FUT9), and F9 ECCs having a disrupted FUT9 locus by gene targeting are reported to exhibit loss of SSEA-1 expression on their cell surface. Mouse ESCs are pluripotent cells and therefore known as “naïve stem cells (NSCs).” In contrast, human ESCs/iPSCs are thought to be epiblast stem cells (EpiSCs) that are slightly more differentiated than NSCs. Recently, it has been demonstrated that treatment of EpiSCs with several reprograming-related drugs can convert EpiSCs to cells similar to NSCs, which led us to speculate that SSEA-1 may have been expressed in these NSC-like EpiSCs. Immunocytochemical staining of these cells with anti-SSEA-1 revealed increased expression of this epitope. RT-PCR analysis also confirmed increased expression of FUT9 transcripts as well as other stemness-related transcripts such as REX-1 (ZFP42). These results suggest that SSEA-1 can be an excellent marker for human NSCs.


Sign in / Sign up

Export Citation Format

Share Document