scholarly journals Laboratory Evaluation of Fiber-Modified Asphalt Mixtures Incorporating Steel Slag Aggregates

2022 ◽  
Vol 70 (3) ◽  
pp. 5967-5990
Author(s):  
Adham Mohammed Alnadish ◽  
Mohamad Yusri Aman ◽  
Herda Yati Binti Katman ◽  
Mohd Rasdan Ibrahim
2013 ◽  
Vol 65 (2) ◽  
Author(s):  
Mohd Rosli Hainin ◽  
Gatot Rusbintardjo ◽  
Mohd Azizi Abdul Aziz ◽  
Asmah Hamim ◽  
Nur Izzi Md. Yusoff

Author(s):  
Benjamin F. Bowers

The work presented attempts to address reflective cracking of asphalt-surfaced pavements through binder modification with a highly polymer (HP)-modified asphalt binder. Nine asphalt mixtures ranging from fine dense-graded mixtures to stone matrix asphalt (SMA) mixtures were investigated with conventional polymer modified binders and HP binder. The dynamic modulus test, overlay test (OT), and semi-circular bend (SCB) test were used to evaluate the mixtures. In the cracking tests, HP mixtures outperformed the conventionally modified control mixtures for the same mixture type. For HP mixtures, in general, SMA mixtures performed better in the cracking test than dense-graded mixtures. One of the dense-graded mixtures having larger nominal maximum aggregate size (NMAS) performed better than the mixture with a smaller NMAS, whereas the other having a larger NMAS was not significantly different in crack testing. Further, a discussion on the calculation of bulk specific gravity and percent air voids in a cut OT and SCB specimen using saturated surface dry or vacuum sealing methods is presented.


Author(s):  
Rahaf Hasan ◽  
Ayman Ali ◽  
Christopher Decarlo ◽  
Mohamed Elshaer ◽  
Yusuf Mehta

The study evaluates the electrical conductivity and mechanical performance of graphite modified asphalt mixtures. The effects of air voids, carbon fiber, and binder performance grade (PG) on the electrical resistivity of graphite modified asphalt mixtures are also assessed. Three graphite grades, two asphalt binders (polymer-modified PG 76-22 and neat PG 64-22), one aggregate type, and one carbon fiber were used to produce graphite modified asphalt mixtures. The mixtures were produced without graphite (control mix, PG 76-22), with only graphite (three grades and PG 76-22), with both graphite and 1% carbon fiber (three grades and PG 76-22), and with graphite (all three grades) and PG 64-22. The electrical conductivity, resistance to rutting, resistance to cracking, and durability of these mixes were evaluated using electrical resistivity (using a multi-meter), asphalt pavement analyzer, Hamburg wheel tracking device, semi-circular bend, indirect tension cracking, and Cantabro loss tests. Test results showed that graphite improves the electrical conductivity of asphalt mixtures when added at dosages of 10% to 15% or higher by volume of binder. Graphite grades with larger particle sizes helped improve the conductivity of asphalt mixtures better than graphite grades with smaller particle sizes. Air voids (higher air voids increased resistivity), carbon fiber dosage (decreased resistivity), and binder performance grade (neat binders had lower resistivity) affected the electrical resistivity of graphite modified asphalt mixtures. Furthermore, graphite modified mixes had better rutting resistance but higher susceptibility to breakdown and cracking when compared with unmodified mixtures.


2014 ◽  
Vol 488-489 ◽  
pp. 558-560
Author(s):  
Xing Song Cao ◽  
Guo Qi Tang ◽  
Shi Xiong Liu ◽  
Xio Qiang Yang ◽  
Bo Chen

The compatibility of rock asphalt modification agent and matrix asphalt was excellent, while different contents of the rock asphalt had great influence on the mechanics properties of mixture. Based on the aggregate grade of the AC-20 mixture, the mechanical properties of the matrix asphalt mixtures and the rock asphalt mixtures with different quantities of rock asphalt were studied by laboratory tests, including the high-temperature stability, low-temperature anti-cracking performance and water stability. This research is to give reference for the proper rock asphalt quantity of the mixture.


2021 ◽  
Vol 11 (1) ◽  
pp. 364
Author(s):  
Ahmed Khater ◽  
Dong Luo ◽  
Moustafa Abdelsalam ◽  
Yanchao Yue ◽  
Yueqin Hou ◽  
...  

Moisture damage and low-temperature cracking are common distresses experienced by road pavement. Different types of modifiers, such as fibers, can be used to improve the quality of asphalt pavements. In this paper, lignin and glass fiber were selected as additives to enhance the water- and low-temperature stability of the asphalt mixtures. The main objective of this study was to evaluate the composite effects of adding lignin fiber and glass fiber to a bituminous mix using experimental methods. The Marshall immersion, freeze–thaw splitting, and three-point bending tests were applied to evaluate the efficiency of lignin fiber (and/or) glass fiber modified asphalt mixes with regard to moisture damage and low temperature. Four kinds of asphalt mixtures, namely, the control asphalt mix (C), lignin fiber modified asphalt mix (L), glass fiber modified asphalt mix (G), and a composite of lignin fiber and glass fiber modified asphalt mix (LG) were evaluated. The experimental results showed that with the addition of 0.30% lignin fiber and 0.30% glass fiber the water stability, low-temperature stability, and quality of bituminous mix were improved significantly. With lignin fiber, the asphalt mixtures showed better resistance to thermal cracking, while glass fiber resulted in greater moisture susceptibility. The composite admixture was more effective than either lignin or glass fiber in modifying the asphalt performance. This clarifies the great beneficial effect of using the composite mixture in the asphalt mixtures industry.


2021 ◽  
Vol 14 ◽  
pp. e00534
Author(s):  
Khaled E. Hassan ◽  
Mohamed I.E. Attia ◽  
Murray Reid ◽  
Mohammed B.S. Al-Kuwari

Sign in / Sign up

Export Citation Format

Share Document