Laboratory evaluation of rutting performance of cold recycling asphalt mixtures containing SBS modified asphalt emulsion

2016 ◽  
Vol 34 (4) ◽  
pp. 309-313 ◽  
Author(s):  
Rezvan Babagoli ◽  
Alireza Ameli ◽  
Habib Shahriari
2019 ◽  
Vol 24 (2) ◽  
pp. 148
Author(s):  
Sri Mulyani ◽  
Nono Nono ◽  
Nyoman Suaryana

Asphalt polymer has superior characteristics than conventional asphalt. Styrene Butadiene Styrene (SBS) is a polymer that has proven its performance in heavy traffic, but it must be imported and expensive. Crumb rubber have high potential to be used as an asphalt modifier. Asphalt modified crumb rubber has high viscosity and is not homogeneous, so that the utilization cannot be delayed. This reduces workability in the field. This study aims to obtain asphalt modified crumb rubber which is easier to use by adding materials that do not affect its performance. RejIRE is a low viscosity additive to restore the properties of bitumen on crumb rubber modified. Experiments were carried out by adding variations in RejIRE levels to crumb rubber modified asphalt to determine its characteristics. Continued investigation of the performance of hot paved mixtures for wearing courses compared to asphalt mixtures with Pen 60/70 asphalt and SBS modified asphalt mixtures. The result is the addition of 0.75% RejIRE on asphalt crumb rubber modification have high workability. Overall the performance of the mix with SBS modified asphalt is better, but the mixture of hot paved with modified asphalt crumb rubber has a resistance to permanent deformation superior to the other paved mixtures.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jie Wang ◽  
Yongchun Qin ◽  
Songchang Huang ◽  
Jian Xu

To study the effect of aging SBS modified asphalt on the performance of asphalt pavement, aging at various times and temperatures was conducted with thin film oven, and then tests were made about the penetration, softening point, ductility, viscosity, toughness, and fluorescence microscopy of modified asphalt with different aging levels. The results show that, with the increasing of aging time, the penetration and ductility of modified asphalt decrease while its softening point and viscosity increase, and the variation trend of the toughness and tenacity is related to the aging temperature; the aging dynamic model with viscosity as parameter can well characterize the aging process of modified asphalt; at microlevel, with the decreasing of SBS particle size, the uniformity of particle size is better. Analysis of macroscopic properties, microscopic characteristics, and significance shows that the SBS particle area ratio has a significant correlation with tenacity as the aging temperature changes. When the aging temperature is 163°C, the SBS particle area ratio still has a significant correlation with tenacity as the aging time changes.


2022 ◽  
Vol 70 (3) ◽  
pp. 5967-5990
Author(s):  
Adham Mohammed Alnadish ◽  
Mohamad Yusri Aman ◽  
Herda Yati Binti Katman ◽  
Mohd Rasdan Ibrahim

2012 ◽  
Vol 204-208 ◽  
pp. 4143-4146
Author(s):  
Zhong Guo He ◽  
Xin De Tang ◽  
Wen Jun Yin ◽  
Yi Fan Sun ◽  
Zhong Bo Liu

Montmorillonite/SBS composite modifed asphalts were prepared by mixing montmorillonite with SBS-modified asphalt, further the corresponding asphalt mixtures were obtained. The paving technical indexes of the mixture such as physical properties, moisture suscepyibility, and high temperature stability were tested, and compared with that of the corresponding SBS-modifed asphalt mixture and base asphalt mixture. The results demonstrate that the montmorillonite/SBS composite modifed asphalt mixture exhibites enhanced stability, improved flow value and moisture susceptibility, and increased high temperature stability.


Author(s):  
Benjamin F. Bowers

The work presented attempts to address reflective cracking of asphalt-surfaced pavements through binder modification with a highly polymer (HP)-modified asphalt binder. Nine asphalt mixtures ranging from fine dense-graded mixtures to stone matrix asphalt (SMA) mixtures were investigated with conventional polymer modified binders and HP binder. The dynamic modulus test, overlay test (OT), and semi-circular bend (SCB) test were used to evaluate the mixtures. In the cracking tests, HP mixtures outperformed the conventionally modified control mixtures for the same mixture type. For HP mixtures, in general, SMA mixtures performed better in the cracking test than dense-graded mixtures. One of the dense-graded mixtures having larger nominal maximum aggregate size (NMAS) performed better than the mixture with a smaller NMAS, whereas the other having a larger NMAS was not significantly different in crack testing. Further, a discussion on the calculation of bulk specific gravity and percent air voids in a cut OT and SCB specimen using saturated surface dry or vacuum sealing methods is presented.


Author(s):  
Rahaf Hasan ◽  
Ayman Ali ◽  
Christopher Decarlo ◽  
Mohamed Elshaer ◽  
Yusuf Mehta

The study evaluates the electrical conductivity and mechanical performance of graphite modified asphalt mixtures. The effects of air voids, carbon fiber, and binder performance grade (PG) on the electrical resistivity of graphite modified asphalt mixtures are also assessed. Three graphite grades, two asphalt binders (polymer-modified PG 76-22 and neat PG 64-22), one aggregate type, and one carbon fiber were used to produce graphite modified asphalt mixtures. The mixtures were produced without graphite (control mix, PG 76-22), with only graphite (three grades and PG 76-22), with both graphite and 1% carbon fiber (three grades and PG 76-22), and with graphite (all three grades) and PG 64-22. The electrical conductivity, resistance to rutting, resistance to cracking, and durability of these mixes were evaluated using electrical resistivity (using a multi-meter), asphalt pavement analyzer, Hamburg wheel tracking device, semi-circular bend, indirect tension cracking, and Cantabro loss tests. Test results showed that graphite improves the electrical conductivity of asphalt mixtures when added at dosages of 10% to 15% or higher by volume of binder. Graphite grades with larger particle sizes helped improve the conductivity of asphalt mixtures better than graphite grades with smaller particle sizes. Air voids (higher air voids increased resistivity), carbon fiber dosage (decreased resistivity), and binder performance grade (neat binders had lower resistivity) affected the electrical resistivity of graphite modified asphalt mixtures. Furthermore, graphite modified mixes had better rutting resistance but higher susceptibility to breakdown and cracking when compared with unmodified mixtures.


2020 ◽  
Vol 32 ◽  
pp. 101550
Author(s):  
Jie Gong ◽  
Xiaocheng Han ◽  
Wufeng Su ◽  
Zhonghua Xi ◽  
Jun Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document