scholarly journals An Experimental Study on the Void Fraction for Gas-Liquid Two-Phase Flows in a Horizontal Pipe

2021 ◽  
Vol 17 (5) ◽  
pp. 1037-1048
Author(s):  
Li Lei ◽  
Jun An ◽  
Fushun Liang ◽  
Cheng Cheng ◽  
Naixiang Zhou ◽  
...  
2012 ◽  
Vol 152-154 ◽  
pp. 1221-1226
Author(s):  
H.A.M. Hasan Abbas

Multiphase flows, where two or even three fluids flow simultaneously in a pipe are becoming increasingly important in industry. In order to measure the flow rate of gas-water two phase flows accurately, the void fraction (gas volume fraction) in two phase flows must be precisely measured. The differential pressure technique has proven attractive in the measurement of volume fraction. This paper presents the theoretical and experimental study of the void fraction measurement in bubbly gas water two phase flows using differential pressure technique (the flow density meter).


2017 ◽  
Author(s):  
Guojun Yu ◽  
Wuyue Ren ◽  
Jiawei Bian ◽  
G. H. Su ◽  
Wenxi Tian ◽  
...  

Author(s):  
Tiago Ferreira Souza ◽  
Caio Araujo ◽  
Maurício Figueiredo ◽  
FLAVIO SILVA ◽  
Ana Maria Frattini Fileti

2008 ◽  
Vol 20 (5) ◽  
pp. 650-655 ◽  
Author(s):  
Wen Cheng ◽  
Wen-hong Liu ◽  
Bao-wei Hu ◽  
Tian Wan

2016 ◽  
Vol 40 (3) ◽  
pp. 746-761 ◽  
Author(s):  
Weiling Liu ◽  
Chao Tan ◽  
Feng Dong

Two-phase flow widely exists in many industries. Understanding local characteristics of two-phase flow under different flow conditions in piping systems is important to design and optimize the industrial process for higher productivity and lower cost. Air–water two-phase flow experiments were conducted with a 16×16 conductivity wire-mesh sensor (WMS) in a horizontal pipe of a multiphase flow facility. The cross-sectional void fraction time series was analysed by the probability density function (PDF), which described the void fraction fluctuation at different flow conditions. The changes and causes of PDFs during a flow regime transition were analysed. The local structure and flow behaviour were characterized by the local flow spectrum energy analysis and the local void fraction distribution (horizontal, vertical and radial direction) analysis. Finally, three-dimensional transient flow fluctuation energy evolution and characteristic scale distribution based on wavelet analysis of air–water two-phase flow were presented, which revealed the structural features of each phase in two-phase flow.


Sign in / Sign up

Export Citation Format

Share Document