scholarly journals Development of Large-Scale Finite Element Solver for Wind Turbine Blade Structure Using Balancing Domain Decomposition Methods

Author(s):  
Yasunori Yusa ◽  
Tomoshi Miyamura ◽  
Tomonori Yamada ◽  
Shinobu Yoshimura
2013 ◽  
Vol 694-697 ◽  
pp. 453-457
Author(s):  
Yu Qiao Zheng ◽  
Rong Zhen Zhao ◽  
Hong Liu

This paper presents a dynamic response analysis of the blade of horizontal axis wind turbines using finite element method. The blade is treated as a thin-walled beam based on the classical lamination theory, and accounts for arbitrary material layup and non-linear anisotropic fibre-reinforced composites. Applying the proposed method,A 29 m rotor blade, previously reported in specialized literature, was chosen as a case study the dynamic behaviour built in a FEM software tool. It is developed to predict natural frequencies and corresponding vibration modes in rotating blade in-plane and out-of-plane. Numerical results are serve as a design tool for the large composite wind turbine blade structure required during design and optimization.


Author(s):  
Prenil Poulose ◽  
Zhong Hu

Strength evaluation and failure prediction on a modern composite wind turbine blade have been conducted using finite element analysis. A 3-dimensional finite element model has been developed. Stresses and deflections in the blade under extreme storm conditions have been investigated for different materials. The conventional wood design turbine blade has been compared with the advanced E-glass fiber and Carbon epoxy composite blades. Strength has been analyzed and compared for blades with different laminated layer stacking sequences and fiber orientations for a composite material. Safety design and failure prediction have been conducted based on the different failure criteria. The simulation error estimation has been evaluated. Simulation results have shown that finite element analysis is crucial for designing and optimizing composite wind turbine blades.


2018 ◽  
Vol 42 (5) ◽  
pp. 467-482 ◽  
Author(s):  
Damien Caous ◽  
Nicolas Lavauzelle ◽  
Julien Valette ◽  
Jean-Christophe Wahl

It is common to dissociate load computation from structural analysis when carrying out a numerical assessment of a wind turbine blade. Loads are usually computed using a multiphysics and multibody beam finite element model of the whole turbine, whereas detailed structural analysis is managed using shell finite element models. This raises the issue of the application of the loads extracted from the beam finite element model at one node for each section and transposed into the shell finite element model. After presenting the methods found in the literature, a new method is proposed. This takes into account the physical consistency of loads: aerodynamic loads are applied as pressure on the blade surface, and inertial loads are applied as body loads. Corrections imposed by pressure and body load computation in order to match loads from the beam finite element model are proposed and a comparison with two other methods is discussed.


2015 ◽  
Author(s):  
Juan Garate ◽  
Stephen A. Solovitz ◽  
Dave Kim

Today a large-scale wind turbine blade can be 70 m long and 5 m in root chord length, and it is fabricated in a single piece. This feature leads to high initial costs, as transportation of a large blade requires special trucks, escorts, and road adaptations. These constraints can account for approximately 6–7% of the total investment for the blade. In addition, the manufacturing process commonly used is a hand lay-up configuration of thermoset composite sheets. These materials are not reusable after fabrication, which is a non-renewable feature of existing systems. The project consists of manufacturing thermoplastic composite blades in segments, which are joined before installation at the turbine site. This paper addresses the preliminary research results when conducting design and fabrication of a small blade with this innovative approach. Three segmented blades are manufactured for a horizontal-axis wind turbine, with each blade having a 50 cm span and a 4 cm tip chord length. The blade size and profile are designed based on the idealized Betz limit condition. The material used for manufacturing is a glass fiber reinforced thermoplastic composite system with a polypropylene matrix that melts at 200 °C. Each blade is fabricated in 4 independently manufactured pieces, consisting of top/bottom, and tip/root segments, via a vacuum assisted thermoforming technique. The parts will be assembled afterwards by a joining process, forming the final part for site testing.


2011 ◽  
Vol 57 (5) ◽  
pp. 466-472 ◽  
Author(s):  
TongGuang Wang ◽  
Long Wang ◽  
Wei Zhong ◽  
BoFeng Xu ◽  
Li Chen

2011 ◽  
Vol 19 (3-4) ◽  
pp. 747-754 ◽  
Author(s):  
Yin-hu Qiao ◽  
Jiang Han ◽  
Chun-yan Zhang ◽  
Jie-ping Chen ◽  
Ke-chuan Yi

Sign in / Sign up

Export Citation Format

Share Document