scholarly journals High-Throughput Screening of Biodiversity for Antibiotic Discovery

Acta Naturae ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 23-29
Author(s):  
S. S. Terekhov ◽  
I. A. Osterman ◽  
I. V. Smirnov

The increasing number of infections caused by antibiotic-resistant strains of pathogens challenges modern technologies of drug discovery. Combinatorial chemistry approaches are based on chemical libraries. They enable the creation of high-affinity low-molecular-weight ligands of the therapeutically significant molecular targets of human cells, thus opening an avenue toward a directed design of highly effective therapeutic agents. Nevertheless, these approaches face insurmountable difficulties in antibiotic discovery. Natural compounds that have evolved for such important characteristics as broad specificity and efficiency are a good alternative to chemical libraries. However, unrestricted use of natural antibiotics and their analogues leads to avalanche-like spread of resistance among bacteria. The search for new natural antibiotics, in its turn, is extremely complicated nowadays by the problem of antibiotic rediscovery. This calls for the application of alternative high-throughput platforms for antibiotic activity screening, cultivation of unculturable microorganisms, exploration of novel antibiotic biosynthetic gene clusters, as well as their activation and heterologous expression. Microfluidic technologies for the screening of antibiotic activity at the level of single cells are, therefore, of great interest, since they enable the use of a single platform to combine the technology of ultrahigh-throughput screening, next-generation sequencing, and genome mining, thus opening up unique opportunities for antibiotic discovery.

Metallomics ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 696-706 ◽  
Author(s):  
Alex G. Dalecki ◽  
Kimberley M. Zorn ◽  
Alex M. Clark ◽  
Sean Ekins ◽  
Whitney T. Narmore ◽  
...  

One potential source of new antibacterials is through probing existing chemical libraries for copper-dependent inhibitors (CDIs), i.e., molecules with antibiotic activity only in the presence of copper.


Metabolites ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 145
Author(s):  
Bernardo Ribeiro da Cunha ◽  
Luís P. Fonseca ◽  
Cecília R.C. Calado

The discovery of antibiotics has been slowing to a halt. Phenotypic screening is once again at the forefront of antibiotic discovery, yet Mechanism-Of-Action (MOA) identification is still a major bottleneck. As such, methods capable of MOA elucidation coupled with the high-throughput screening of whole cells are required now more than ever, for which Fourier-Transform Infrared (FTIR) spectroscopy is a promising metabolic fingerprinting technique. A high-throughput whole-cell FTIR spectroscopy-based bioassay was developed to reveal the metabolic fingerprint induced by 15 antibiotics on the Escherichia coli metabolism. Cells were briefly exposed to four times the minimum inhibitory concentration and spectra were quickly acquired in the high-throughput mode. After preprocessing optimization, a partial least squares discriminant analysis and principal component analysis were conducted. The metabolic fingerprints obtained with FTIR spectroscopy were sufficiently specific to allow a clear distinction between different antibiotics, across three independent cultures, with either analysis algorithm. These fingerprints were coherent with the known MOA of all the antibiotics tested, which include examples that target the protein, DNA, RNA, and cell wall biosynthesis. Because FTIR spectroscopy acquires a holistic fingerprint of the effect of antibiotics on the cellular metabolism, it holds great potential to be used for high-throughput screening in antibiotic discovery and possibly towards a better understanding of the MOA of current antibiotics.


2017 ◽  
Vol 89 (22) ◽  
pp. 12569-12577 ◽  
Author(s):  
Xixian Wang ◽  
Lihui Ren ◽  
Yetian Su ◽  
Yuetong Ji ◽  
Yaoping Liu ◽  
...  

2016 ◽  
Vol 21 (9) ◽  
pp. 931-941 ◽  
Author(s):  
Karsten Boehnke ◽  
Philip W. Iversen ◽  
Dirk Schumacher ◽  
María José Lallena ◽  
Rubén Haro ◽  
...  

The application of patient-derived three-dimensional culture systems as disease-specific drug sensitivity models has enormous potential to connect compound screening and clinical trials. However, the implementation of complex cell-based assay systems in drug discovery requires reliable and robust screening platforms. Here we describe the establishment of an automated platform in 384-well format for three-dimensional organoid cultures derived from colon cancer patients. Single cells were embedded in an extracellular matrix by an automated workflow and subsequently self-organized into organoid structures within 4 days of culture before being exposed to compound treatment. We performed validation of assay robustness and reproducibility via plate uniformity and replicate-experiment studies. After assay optimization, the patient-derived organoid platform passed all relevant validation criteria. In addition, we introduced a streamlined plate uniformity study to evaluate patient-derived colon cancer samples from different donors. Our results demonstrate the feasibility of using patient-derived tumor samples for high-throughput assays and their integration as disease-specific models in drug discovery.


2018 ◽  
Vol 9 (3) ◽  
pp. 23-29
Author(s):  
S. S. Terekhov ◽  
◽  
I. A. Osterman ◽  
I. V. I. V. Smirnov ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document