scholarly journals ВИЗНАЧЕННЯ КОЕФІЦІЄНТУ КОРИСНОЇ ДІЇ ДВОКОМПОНЕНТНОГО ПНЕВМОНАСОСНОГО АГРЕГАТУ ДЛЯ КОСМІЧНОГО АПАРАТА

2018 ◽  
pp. 12-19
Author(s):  
Владимир Иванович Конох ◽  
Игорь Иванович Калиниченко ◽  
Иван Николаевич Гордиец ◽  
Василий Васильевич Миколаевский

Research has been carried out to determine the efficiency of the piston pneumatic pump unit (PPU) of two-way action for the fuel supply system of a spacecraft operating on propellants of AT and MMH (UDMH). The PPU relates to volumetric pumps, therefore, the efficiency is defined as the ratio of effective work performed by the PPU to the expended gas work. The range of total propellants flow rates from 100 to 240 g/s through the PPU is determined by the operating modes of main engine and steering thrusters. As a result of performed researches, the PPU efficiency and main factors influencing on its value were theoretically determined, namely: gas losses for filling "parasitic" volumes including the volumes that do not participate in the process of fluid displacement from hydraulic pumps (volumes associated with incomplete fit of the pneumatic pistons to the bottoms of the pneumatic cylinders, the volume of control and supply channels), but are ejected into the environment at each operation of the PPU pneumatic distributor together with the volume of gas that performed effective work; gas ejections through the drainage seats into the environment at pneumatic distributors switchings, since at pneumatic distributors switchings some cavities are connected with the power supply source by control pressure, and other ones - with environment by poppet moving from the feed seat to the drainage seat; inlet air (helium) pressure losses due to the resistance of gas channels of the pneumatic distributors; friction of seals with fluoroplastic collars of the piston blocks; resistance of the hydraulic channels which components are: pressure losses of non-return valves and hydraulic channels; displaced fluid volume decreasing by hydraulic pumps due to leakage of non-return valves, piston collars and hydraulic pumps rods. The bipropellant PPU efficiency was theoretically and experimentally determined at different operating modes. The calculated value of the efficiency is well confirmed by experiments at that the divergence does not exceed 4%. The results of this research will allow us to determine the necessary gas reserves on board of spacecraft at the stage of designing.

Vestnik MEI ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 86-92
Author(s):  
Nikita M. Vakhmyanin ◽  
◽  
Aleksey V. Shcherbakov ◽  
Daria A. Gaponova ◽  
◽  
...  

We developed an automatic system of synchronous connection of a backup power supply source in power systems with synchronous and asynchronous motors in case of power loss from the main source. Here, we propose performing continuous monitoring of the instantaneous voltage values of the main and backup power sources and determining the angle between them. The time to send the command to turn the backup power switch on is determined on the basis of the results of approximating the dependence of the angle between the voltages of the main and backup power sources on time. The proposed algorithm can be used in microprocessor fast-acting automatic transfer switch devices to ensure acceptable levels of currents of stators and electromagnetic moments of electric motors in self-starting modes and to maintain a complex continuous technolo­gical process at industrial enterprises. The effectiveness of the developed automatic system of synchronous connection of a backup power supply source has been confirmed using mathematical modeling methods and laboratory tests at an experimental stand.


As the Smart Grid concept has become a part of the electric power industry development, DC/DC conver­ters have turned into a matter of increased interest. This is due to their effective coordination in the DC-bus system operating different types of power sources, including renewable ones and energy storage devices (batteries, supercapacitor modules), and various loads. The article analyzes switch mode power supply DC/DC converters for autonomous power supply systems. The application of the SEPIC (Single Ended Primary Inductance Converter) type converter is substantiated. The techniques of determining the parameters of the converter are presented. The active phase at the duty cycle operation has been demonstrated, and justified in accordance with the theoretical behavior in response to an input voltage change above and below the desired output value. A simulation of the converter's operation in the buck and boost modes in order to stabilize the output voltage at a set level has been performed in the MATLAB / Simulink package. The obtained simulation results show the effectiveness of the suggested solution for an autonomous power supply source.


Author(s):  
A. R. Safin ◽  
I. V. Ivshin ◽  
E. I. Gracheva ◽  
T. I. Petrov

One of the current trends at present is the development of small energy, which is a particularly urgent task for the Russian Federation with its vast territories and the specifics of the electric power system. In the Russian Federation, the bulk of the electricity is generated at large power plants and transmitted through power lines. 60–70% of the country's territory lacks a centralized power supply, where more than 20 million people live, and the development of small and micro-energy facilities is necessary. Using a synchronous electric reciprocating machine with permanent magnets in power plants of a modular type makes it possible to rationally design an autonomous power supply source, to obtain the most optimal design. The development of methodological design decisions and the optimization of engine design parameters as part of generating and drive complexes is an important scientific task. A mathematical description of thermodynamic processes in a free-piston internal combustion engine, electromechanical and thermal processes occurring in a synchronous electric reciprocating machine with permanent magnets is developed, which is a necessary condition for designing and optimizing the design of an autonomous electric power complex. According to theoretical calculations, in the Matlab application, on the basis of the additional Simulink module, a simulation model of a free-piston internal combustion engine, linear current load calculation units, stator magnetic induction, magnetic induction created by permanent inductor magnets, electromagnetic force were developed and calculated. The created procedure for calculating the parameters of the electromagnetic component of the force of a synchronous machine with permanent magnets allows you to calculate and optimize the design parameters of the inductor and stator element of the electric motor under consideration. Thus, this will allow us to design electric machines with improved energy characteristics, due to the use of the obtained simulation results, which will allow us to use them more efficiently in the composition of generating and drive complexes.


2015 ◽  
Vol 793 ◽  
pp. 343-347
Author(s):  
A.Rahim A. Razak ◽  
U. Hashim ◽  
Syed Idris Syed Hasan ◽  
M. Zhafran

Most of renewable energy electrification systems in rural residential area in Malaysia are benefitting the solar PV (photovoltaic) system. The initial 24VDC voltage generated by the modules are converted and inverted to 240VAC to replicate national utility grid standard. However indeed most modern connected loads and electrical appliance are operable within DC voltage internally which requires no extra conversion or inversion at all. Nevertheless when the AC voltage from the grid once been connected to the system, the early PV modules seemed to be totally forgotten and abandoned. An energy conservation concept has been disrupted. A new strategy of benefitting both available DC power and AC utility grid was introduced which could be implemented to save energy and optimised the whole system. Throughout design concept has been proposed and discussed.


Sign in / Sign up

Export Citation Format

Share Document