scholarly journals Protein Structure Classification Based on Distance Feature

Author(s):  
Sheshang Degadwala ◽  
Dhairya Vyas ◽  
Harsh S Dave

In Bioinformatics field Protein Structure Classification is the hugest undertaking. The realized proteins have been requested subject to their level, feature, work, amino destructive and family and superfamily. Protein structure segregated into four sorts: all ? protein structure, all ? protein structure, ?+? protein structure, and ?/? protein structure. The use of a standard way to deal with perform plan is a very inconvenient and dreary task. The quantity of cutting edge Machine Intelligence enrolling strategies such Support Vector Machine, Random Forest, Artificial Neural Network, Decision Tree and Naïve Bayes Classifier had been proposed in the composition. Our objective right currently is to develop a system that performs better than anything past markers for protein structure gathering by thinking about the separation among the distinctive Amino Acid buildups. To take a gander at the display of proposed work particular datasets are used.

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257069
Author(s):  
Jae-Geum Shim ◽  
Kyoung-Ho Ryu ◽  
Sung Hyun Lee ◽  
Eun-Ah Cho ◽  
Sungho Lee ◽  
...  

Objective To construct a prediction model for optimal tracheal tube depth in pediatric patients using machine learning. Methods Pediatric patients aged <7 years who received post-operative ventilation after undergoing surgery between January 2015 and December 2018 were investigated in this retrospective study. The optimal location of the tracheal tube was defined as the median of the distance between the upper margin of the first thoracic(T1) vertebral body and the lower margin of the third thoracic(T3) vertebral body. We applied four machine learning models: random forest, elastic net, support vector machine, and artificial neural network and compared their prediction accuracy to three formula-based methods, which were based on age, height, and tracheal tube internal diameter(ID). Results For each method, the percentage with optimal tracheal tube depth predictions in the test set was calculated as follows: 79.0 (95% confidence interval [CI], 73.5 to 83.6) for random forest, 77.4 (95% CI, 71.8 to 82.2; P = 0.719) for elastic net, 77.0 (95% CI, 71.4 to 81.8; P = 0.486) for support vector machine, 76.6 (95% CI, 71.0 to 81.5; P = 1.0) for artificial neural network, 66.9 (95% CI, 60.9 to 72.5; P < 0.001) for the age-based formula, 58.5 (95% CI, 52.3 to 64.4; P< 0.001) for the tube ID-based formula, and 44.4 (95% CI, 38.3 to 50.6; P < 0.001) for the height-based formula. Conclusions In this study, the machine learning models predicted the optimal tracheal tube tip location for pediatric patients more accurately than the formula-based methods. Machine learning models using biometric variables may help clinicians make decisions regarding optimal tracheal tube depth in pediatric patients.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2119
Author(s):  
Victor Flores ◽  
Claudio Leiva

The copper mining industry is increasingly using artificial intelligence methods to improve copper production processes. Recent studies reveal the use of algorithms, such as Artificial Neural Network, Support Vector Machine, and Random Forest, among others, to develop models for predicting product quality. Other studies compare the predictive models developed with these machine learning algorithms in the mining industry as a whole. However, not many copper mining studies published compare the results of machine learning techniques for copper recovery prediction. This study makes a detailed comparison between three models for predicting copper recovery by leaching, using four datasets resulting from mining operations in Northern Chile. The algorithms used for developing the models were Random Forest, Support Vector Machine, and Artificial Neural Network. To validate these models, four indicators or values of merit were used: accuracy (acc), precision (p), recall (r), and Matthew’s correlation coefficient (mcc). This paper describes the dataset preparation and the refinement of the threshold values used for the predictive variable most influential on the class (the copper recovery). Results show both a precision over 98.50% and also the model with the best behavior between the predicted and the real values. Finally, the obtained models have the following mean values: acc = 0.943, p = 88.47, r = 0.995, and mcc = 0.232. These values are highly competitive when compared with those obtained in similar studies using other approaches in the context.


eFood ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 69 ◽  
Author(s):  
Cecilia Martinez-Castillo ◽  
Gonzalo Astray ◽  
Juan Carlos Mejuto ◽  
Jesus Simal-Gandara

Author(s):  
Victor Flores ◽  
Claudio Leiva

The copper mining industry is increasingly using artificial intelligence methods to improve cop-per production processes. Recent studies reveal the use of algorithms such as Artificial Neural Network, Support Vector Machine, and Random Forest, among others, to develop models for predicting product quality. Other studies compare the predictive models developed with these machine learning algorithms in the mining industry, as a whole. However, not many copper mining studies published compare the results of machine learning techniques for copper recovery prediction. This study makes a detailed comparison between three models for predicting copper recovery by leaching, using four datasets resulting from mining operations in northern Chile. The algorithms used for developing the models were Random Forest, Support Vector Machine, and Artificial Neural Network. To validate these models, four indicators or values of merit were used: accuracy (acc), precision (p), recall (r), and Matthew&rsquo;s correlation coefficient (mcc). This paper describes dataset preparation and the refinement of the threshold values used for the predictive variable most influential on the class (the copper recovery). Results show both a precision over 98.50% and also the model with the best behavior between the predicted and the real. Finally, the models obtained show the following mean values: acc=94.32, p=88.47, r=99.59, and mcc=2.31. These values are highly competitive as compared with those obtained in similar studies using other approaches in the context.


Biomedicines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 12
Author(s):  
Chung-Yao Chien ◽  
Szu-Wei Hsu ◽  
Tsung-Lin Lee ◽  
Pi-Shan Sung ◽  
Chou-Ching Lin

Background: The challenge of differentiating, at an early stage, Parkinson’s disease from parkinsonism caused by other disorders remains unsolved. We proposed using an artificial neural network (ANN) to process images of dopamine transporter single-photon emission computed tomography (DAT-SPECT). Methods: Abnormal DAT-SPECT images of subjects with Parkinson’s disease and parkinsonism caused by other disorders were divided into training and test sets. Striatal regions of the images were segmented by using an active contour model and were used as the data to perform transfer learning on a pre-trained ANN to discriminate Parkinson’s disease from parkinsonism caused by other disorders. A support vector machine trained using parameters of semi-quantitative measurements including specific binding ratio and asymmetry index was used for comparison. Results: The predictive accuracy of the ANN classifier (86%) was higher than that of the support vector machine classifier (68%). The sensitivity and specificity of the ANN classifier in predicting Parkinson’s disease were 81.8% and 88.6%, respectively. Conclusions: The ANN classifier outperformed classical biomarkers in differentiating Parkinson’s disease from parkinsonism caused by other disorders. This classifier can be readily included into standalone computer software for clinical application.


2020 ◽  
pp. 002029402096482
Author(s):  
Sulaiman Khan ◽  
Abdul Hafeez ◽  
Hazrat Ali ◽  
Shah Nazir ◽  
Anwar Hussain

This paper presents an efficient OCR system for the recognition of offline Pashto isolated characters. The lack of an appropriate dataset makes it challenging to match against a reference and perform recognition. This research work addresses this problem by developing a medium-size database that comprises 4488 samples of handwritten Pashto character; that can be further used for experimental purposes. In the proposed OCR system the recognition task is performed using convolution neural network. The performance analysis of the proposed OCR system is validated by comparing its results with artificial neural network and support vector machine based on zoning feature extraction technique. The results of the proposed experiments shows an accuracy of 56% for the support vector machine, 78% for artificial neural network, and 80.7% for the proposed OCR system. The high recognition rate shows that the OCR system based on convolution neural network performs best among the used techniques.


Sign in / Sign up

Export Citation Format

Share Document