scholarly journals Experimental Study on Effect of Laser Hardening Parameters on Carbon Steel, Non-Malleable Cast iron and X20Cr13 Materials

Author(s):  
K. Prashanthi ◽  
B. Ramakrishna

Laser hardening is a surface heat treatment process used to enhance tribological and mechanical properties of metals which also leads to increase in service life of the components. Material removal, wear and tear, load concentration occurs mostly at rotating and reciprocating parts. Hence it is sufficient to enhance the hardness of a component at functional areas rather than the entire component. Laser hardening process is designed to change the microstructure of metals through controlled heating and cooling to get a modified surface. The constraints of traditional surface heat treatment process such as inability to treat specific area, distortion, poor degree of controllability, requirement of a quenching medium, long cycle time can be overcome by using Laser surface heat treatment and in addition to that it can be automated. With its benefits Laser surface hardening turns out to be a cost effective and energy saving process. The presented work is an investigation of the laser surface hardening via experimental results making use of a 6 axis robotic arm and a 10KW high power diode laser system as heat source with a wavelength of 980nm on leading automotive parts such as retainer, hub, and turbine blade whose materials being non-malleable cast iron, carbon steel, X20Cr13 respectively. Process parameters such as laser power from power source, scan speed were varied to understand the influence on resulting heat treated surface and efforts were made to optimize the process parameters to attain maximum hardness for the component to enhance its working life.

2014 ◽  
Vol 592-594 ◽  
pp. 473-478 ◽  
Author(s):  
S. Balasubramanian ◽  
K. Manonmani ◽  
R.M. Hemalatha

A safe and healthy work piece is important for sustainable manufacturing process. Green laser surface hardening is a heat treatment process on a part of its application does not use water or oil as quenching media, because it is self-quenching and less detrimental to the environment. Since it is an energy saving process it is fast being adopted by manufacturing industries. Quenching media used in conventional heat treatment process for a sudden cooling of the heated work piece to get hard structure transformation. Unfortunately the reactions of quenchant with hot working also have several negative health, production cost, and environmental impact.This paper focuses the experimental investigation into the roller of green surface hardening on energy saving, the production cost of the industrial components. A comparative study of surface hardening under conventional and laser sources was conducted using similar components. The results show that the quality of hardening improved in laser hardening but the process time increased marginally at one stage and reduced at other shapes of manufacturing. In analyzing the process cost laser hardening show cast saving notably.


2011 ◽  
Vol 284-286 ◽  
pp. 273-276
Author(s):  
Li Sheng Zhong ◽  
Yun Hua Xu ◽  
Xin Cheng Liu ◽  
Fang Xia Ye ◽  
Jing Lai Tian ◽  
...  

The method of infiltration casting plus heat treatment process employing chromium wires and cast iron applied to in-situ synthesized (Fe,Cr)7C3 particulates bundle reinforced iron matrix composites. The phase analysis, microstructure, microhardness and wear-resistance of composite were observed and measured. The results show that it is possible to fabricate (Fe,Cr)7C3 particulates bundle reinforced iron matrix composite produced by this technology, and a special structure which called particulates bundle was fabricated. (Fe,Cr)7C3 particulates bundle were distributed in the forms of granular, lath-shaped and hexagon-shaped in the particulates bundle. The macrohardness of particulates bundle was 52 HRC, and the relative wear resistance of the composites is 2.3—23 times higher than that of the cast iron.


2011 ◽  
Vol 328-330 ◽  
pp. 1297-1300
Author(s):  
Guang Si Luo

Austempered ductile cast iron is newly developed engineering material with a favorable combination of comprehensive mechanical properties. Its properties, such as good comprehensive mechanical properties, high fatigue strength, and good fiction and wear characteristics are included. The application of ADI at home and abroad was presented as well. In order to ensure and improve mechanical properties of ADI, it should ensure high rank nodularity in terms of nodular cast iron, improve graphite nodules, reduce segregation and properly cut down the content of silicon and manganese. While in terms of heat treatment, in order to achieve ideal austenite ferrites, stable and reliable heat treatment process as well as relevant equipment is required.


2020 ◽  
Author(s):  
Rupendra Tanwar ◽  
Pradhyumn Soni ◽  
Sameer Quraishi ◽  
Sujay Kankariya Jain ◽  
Sujay Yadav

2018 ◽  
Vol 7 (4.35) ◽  
pp. 527
Author(s):  
Kharudin Ali ◽  
Johnny Koh Siaw Paw ◽  
M.Aizat M.Sulaiman ◽  
Ahmed N. Abdalla ◽  
Chong Kok Hen ◽  
...  

Ultrasonic testing or commonly known as UT is one of the non-destructive testing technique and widely used in oil and gas industrial inspection. This technique mostly used in defect or crack identification of the pipeline and also used for flaw detection/evaluation, dimensional measurements, and material characterization. This paper presents the effect of heat treatment for S55C carbon steel in attenuation measurement by using ultrasonic testing including annealing, tempering, and quenching process.  Seawater and oil are used as a medium of quenching process. The fixed excitation frequency at 4 MHz is used and 0 degrees with double crystal is implemented in this measurement. The thicknesses of blocks used are as the sample from 30mm until 80mm. The result shows that the measurement of material attenuation will be decreased after annealing, tempering and quenching process from 40% until 99% compared to before the heat treatment process. The highest attenuation decreasing can be seen on the sample block with the 30mm thickness in the heat treatment process.  


Sign in / Sign up

Export Citation Format

Share Document