scholarly journals Modeling, optimization and thermal characterization of micropillar evaporator based high performance silicon vapor chamber

2017 ◽  
Author(s):  
◽  
Mengyao Wei
Author(s):  
Shiladitya Chakravorty ◽  
Bahgat Sammakia ◽  
Varaprasad Calmidi

Improved performance of semiconductor devices in recent years has resulted in consequent increase in power dissipation. Hence thermal characterization of components becomes important from an overall thermal design perspective of the system. This study looks at a high performance non-isolated point of load power module (a DC to DC converter) meant for advanced computing and server applications. Thermal characteristics of the module were experimentally analyzed by placing the power module on a bare test board (with no insulation) inside a wind tunnel with thermocouples attached to it. There were three devices on this module that dissipate power. There were two FETs (Field Effect Transistors) and an inductor which can be considered as sources. The consolidated power dissipation from the module was calculated by measuring the input voltage and input current while keeping the output voltage and current constant. Temperatures at various points on the module and the test card were recorded for different air flow velocities and overall power dissipation. Subsequently this set up was numerically analyzed using a commercially available computational fluid dynamics (CFD) code with the objective of comparing the results with experimental data previously obtained.


2018 ◽  
Vol 9 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Á. Lakatos ◽  
I. Deák ◽  
U. Berardi

The development of high performance insulating materials incorporating nanotechnologies has enabled considerable decrease in the effective thermal conductivity. Besides the use of conventional insulating materials, such as mineral fibers, the adoption of new nano-technological materials such as aerogel, vacuum insulation panels, graphite expanded polystyrene, is growing. In order to reduce the thermal conductivity of polystyrene insulation materials, during the manufacturing, nano/micro-sized graphite particles are added to the melt of the polystyrene grains. The mixing of graphite flakes into the polystyrene mould further reduces the lambda value, since graphite parts significantly reflect the radiant part of the thermal energy. In this study, laboratory tests carried out on graphite insulation materials are presented. Firstly, thermal conductivity results are described, and then sorption kinetic curves at high moisture content levels are shown. The moisture up-taking behaviour of the materials was investigated with a climatic chamber where the relative humidity was 90% at 293 K temperature. Finally, calorific values of the samples are presented after combusting in a bomb calorimeter.


1992 ◽  
Vol 32 (17) ◽  
pp. 1236-1241 ◽  
Author(s):  
Michael Jaffe ◽  
M. Ishaq Haider ◽  
Joseph Menczel ◽  
Joseph Rafalko

2014 ◽  
Vol 529 ◽  
pp. 97-101
Author(s):  
Fabrizia Ghezzo ◽  
Xi Geng Miao ◽  
Ruo Peng Liu

The effect of the presence of fillers on the thermal properties of a high performance elastomer was investigated in this work. The characterization of the specific heat capacity (Cp), the specific heat flow and the glass transition temperature of a polyurea elastomer reinforced with two different classes of fillers, i.e. short glass fibers and alumina nanoparticles, was conducted by using a differential scanning calorimeter (DSC). We present and discuss the results of the experimental characterization carried out on the reinforced material. The results are compared to those obtained by testing the pure polymer.


1999 ◽  
Vol 6 (1) ◽  
pp. 101-108 ◽  
Author(s):  
E. Delacre ◽  
D. Defer ◽  
E. Antczak ◽  
B. Duthoit

Sign in / Sign up

Export Citation Format

Share Document