scholarly journals CHANGES OF LAND USE AND LAND COVER IN SMALL ISLANDS CASE STUDY: WEH-SABANG ISLAND, INDONESIA

2019 ◽  
Vol 10 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Arif, A.A. ◽  
Machdar,I ◽  
Azmeri ◽  
Achmad,A

Development will increase sporadic land use and tend to cause land degradation. This paper is intended to investigate the effects of land use and land cover processes on Weh-Sabang Island, Indonesia. The duration of LULC changes is analyzed using Google Earth images from 2008 to 2018. Through observations of satellite imagery detected protected area and green space area has been greatly reduced in area and transformed into built-in land which functions as a tourist area and urban built environment. Where as in the coastal areas the change from vacant land to land that was built has also become larger over the past ten years. The increase in land density since 2008 is due to the construction of tourist attractions in hilly areas to coastal areas around Weh-Sabang Island, and can cause changes in the morphology and typology of the city of Sabang. Through the method of calculating the Land Diversity Index, changes can be made in the number of areas that have changed in the period of the year being monitored. The coastal areas experience more land use changes than hilly areas, and through observations of LULC changes across Weh Island, it is expected that efforts will be made to control land use changes in areas that have directly experienced land degradation, and must consider environmental control efforts. As small island like that which happened on Weh-Sabang Island. The westernmost island of the Republic of Indonesia.

2020 ◽  
Vol 17 (7) ◽  
pp. 3164-3171
Author(s):  
Azhar Abdullah Arif ◽  
Izarul Machdar ◽  
Azmeri ◽  
Ashfa Achmad

With some soils being developed and used increasingly, an outcome that has been reported entails deterioration. In this study, the main aim was to evaluate how the issues of land cover and land use affect Indonesia’s Weh-Sabang Island. The period of investigation was 10 years, stretching between 2008 and 2018, with particular emphasis on ArcGIS and Google Earth images. The parameter under examination entailed the LULC changes. The primary motivation lay in the need for ArchGIS map development using the AHP (analytical hierarchy process). The land diversity index approach was employed to discern changes in various areas, perceived to have undergone those changes for years. The research area constituted the green spaces and protected areas, especially changes that had occurred in these regions due to built-in operations via tourism and other environmental developments. When the land diversity index criterion is incorporated, it is notable that there can be observations in the number of areas, as well as the nature of changes that such areas might have undergone for years-or with time. Important to note is that most of the land use changes are occurring in costal zones, compared to the case of hilly zones, with the context of Weh Island, relative to the LULC images obtained, unexceptional. As such, efforts ought to be targeted or directed at controlling or regulating changes in land use patterns, especially by emphasizing zones that have undergone direct land degradation. There is also a need to analyze how sustainable the process of using the water resource is in the context of Sabang City. This study’s findings demonstrated that there were significant changes from the previously vacant land to significant land use practices, stretching from hilly to coastal zones in the context of Weh Island.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Aman Srivastava ◽  
Pennan Chinnasamy

AbstractThe present study, for the first time, examined land-use land cover (LULC), changes using GIS, between 2000 and 2018 for the IIT Bombay campus, India. Objective was to evaluate hydro-ecological balance inside campus by determining spatio-temporal disparity between hydrological parameters (rainfall-runoff processes), ecological components (forest, vegetation, lake, barren land), and anthropogenic stressors (urbanization and encroachments). High-resolution satellite imageries were generated for the campus using Google Earth Pro, by manual supervised classification method. Rainfall patterns were studied using secondary data sources, and surface runoff was estimated using SCS-CN method. Additionally, reconnaissance surveys, ground-truthing, and qualitative investigations were conducted to validate LULC changes and hydro-ecological stability. LULC of 2018 showed forest, having an area cover of 52%, as the most dominating land use followed by built-up (43%). Results indicated that the area under built-up increased by 40% and playground by 7%. Despite rapid construction activities, forest cover and Powai lake remained unaffected. This anomaly was attributed to the drastically declining barren land area (up to ~ 98%) encompassing additional construction activities. Sustainability of the campus was demonstrated with appropriate measures undertaken to mitigate negative consequences of unwarranted floods owing to the rise of 6% in the forest cover and a decline of 21% in water hyacinth cover over Powai lake. Due to this, surface runoff (~ 61% of the rainfall) was observed approximately consistent and being managed appropriately despite major alterations in the LULC. Study concluded that systematic campus design with effective implementation of green initiatives can maintain a hydro-ecological balance without distressing the environmental services.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 173
Author(s):  
Changjun Gu ◽  
Yili Zhang ◽  
Linshan Liu ◽  
Lanhui Li ◽  
Shicheng Li ◽  
...  

Land use and land cover (LULC) changes are regarded as one of the key drivers of ecosystem services degradation, especially in mountain regions where they may provide various ecosystem services to local livelihoods and surrounding areas. Additionally, ecosystems and habitats extend across political boundaries, causing more difficulties for ecosystem conservation. LULC in the Kailash Sacred Landscape (KSL) has undergone obvious changes over the past four decades; however, the spatiotemporal changes of the LULC across the whole of the KSL are still unclear, as well as the effects of LULC changes on ecosystem service values (ESVs). Thus, in this study we analyzed LULC changes across the whole of the KSL between 2000 and 2015 using Google Earth Engine (GEE) and quantified their impacts on ESVs. The greatest loss in LULC was found in forest cover, which decreased from 5443.20 km2 in 2000 to 5003.37 km2 in 2015 and which mainly occurred in KSL-Nepal. Meanwhile, the largest growth was observed in grassland (increased by 548.46 km2), followed by cropland (increased by 346.90 km2), both of which mainly occurred in KSL-Nepal. Further analysis showed that the expansions of cropland were the major drivers of the forest cover change in the KSL. Furthermore, the conversion of cropland to shrub land indicated that farmland abandonment existed in the KSL during the study period. The observed forest degradation directly influenced the ESV changes in the KSL. The total ESVs in the KSL decreased from 36.53 × 108 USD y−1 in 2000 to 35.35 × 108 USD y−1 in 2015. Meanwhile, the ESVs of the forestry areas decreased by 1.34 × 108 USD y−1. This shows that the decrease of ESVs in forestry was the primary cause to the loss of total ESVs and also of the high elasticity. Our findings show that even small changes to the LULC, especially in forestry areas, are noteworthy as they could induce a strong ESV response.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2493 ◽  
Author(s):  
Meena Kumari Kolli ◽  
Christian Opp ◽  
Daniel Karthe ◽  
Michael Groll

India’s largest freshwater ecosystem of the Kolleru Lake has experienced severe threats by land-use changes, including the construction of illegal fishponds around the lake area over the past five decades. Despite efforts to protect and restore the lake and its riparian zones, environmental pressures have increased over time. The present study provides a synthesis of human activities through major land-use changes around Kolleru Lake both before and after restoration measures. For this purpose, archives of all Landsat imageries from the last three decades were used to detect land cover changes. Using the Google Earth Engine cloud platform, three different land-use scenarios were classified for the year before restoration (1999), for 2008 immediately after the restoration, and for 2018, i.e., the current situation of the lake one decade afterward. Additionally, the NDVI (Normalized Difference Vegetation Index) and NDWI (Normalized Difference Water Index) indices were used to identify land cover dynamics. The results show that the restoration was successful; consequently, after a decade, the lake was transformed into the previous state of restoration (i.e., 1999 situation). In 1999, 29.7% of the Kolleru Lake ecosystem was occupied by fishponds, and, after a decade of sustainable restoration, 27.7% of the area was fishponds, almost reaching the extent of the 1999 situation. On the one hand, aquaculture is one of the most promising sources of income, but there is also limited awareness of its negative environmental impacts among local residents. On the other hand, political commitment to protect the lake is weak, and integrated approaches considering all stakeholders are lacking. Nevertheless, alterations of land and water use, increasing nutrient concentrations, and sediment inputs from the lake basin have reached a level at which they threaten the biodiversity and functionality of India’s largest wetland ecosystem to the degree that immediate action is necessary to prevent irreversible degradation.


Author(s):  
Ndaru Diatama ◽  
Chatarina Muryani ◽  
Rahning Utomowati

<em>The purpose of this research are:  1) analyze the shoreline change in the coastal areas of North Pekalongan Sub-district from 2003 to 2018; 2) Analyze the  land use change in the coastal areas of North Pekalongan from 2003 to 2018; This type of research is a qualitative descriptive with a spatial  approach. Data   obtained from interpretation of  IKONOS image from Google Earth in 2003, year 2013, and year 2018. The research steps were: (1) interpretation  of Google Earth IKONOS image year 2003-2018, (2) Overlay of  shoreline map of year 2003 and year 2018, (3) overlay of land use maps of year 2003- year 2018. The results of the study were: (1) The shoreline of North Pekalongan Sub-district was retreat 7.261 meters up to 94.383 meters. (2) The largest land use changes in North Pekalongan sub district was  the change of land to a flooded land of 624.379 ha or 52.556% of land in the area.</em>


2021 ◽  
Vol 10 (7) ◽  
pp. 464
Author(s):  
Jiansong Luo ◽  
Xinwen Ma ◽  
Qifeng Chu ◽  
Min Xie ◽  
Yujia Cao

Land use and land cover (LULC) are fundamental units of human activities. Therefore, it is of significance to accurately and in a timely manner obtain the LULC maps where dramatic LULC changes are undergoing. Since 2017 April, a new state-level area, Xiong’an New Area, was established in China. In order to better characterize the LULC changes in Xiong’an New Area, this study makes full use of the multi-temporal 10-m Sentinel-2 images, the cloud-computing Google Earth Engine (GEE) platform, and the powerful classification capability of random forest (RF) models to generate the continuous LULC maps from 2017 to 2020. To do so, a novel multiple RF-based classification framework is adopted by outputting the classification probability based on each monthly composite and aggregating the multiple probability maps to generate the final classification map. Based on the obtained LULC maps, this study analyzes the spatio-temporal changes of LULC types in the last four years and the different change patterns in three counties. Experimental results indicate that the derived LULC maps achieve high accuracy for each year, with the overall accuracy and Kappa values no less than 0.95. It is also found that the changed areas account for nearly 36%, and the dry farmland, impervious surface, and other land-cover types have changed dramatically and present varying change patterns in three counties, which might be caused by the latest planning of Xiong’an New Area. The obtained 10-m four-year LULC maps in this study are supposed to provide some valuable information on the monitoring and understanding of what kinds of LULC changes have taken place in Xiong’an New Area.


2019 ◽  
Vol 10 (1) ◽  
pp. 15
Author(s):  
Eyad H Fadda ◽  
Fatemah Al Shebli ◽  
Ayshah Al Kabi

Many studies house indicated the increase of the proportion of urban areas over the arable land in many provinces of the Sultanate of Oman. This came as a result of urban growth and development processes taking place since the era of the Renaissance which started in 1970. Consequently, spatial variation in land use is an important issue to be taken into consideration, because lands are being converted to be less productive, due to the lack of raw soil, vegetation, and water as a result of human exploitation of the limited resources in different ways, in addition to the natural factors of droughts and floods and all that will eventually lead to land degradation. Barka province (wilayat) in al Batinah Governorate is one of the provinces, which has been affected by land cover/land use changes due to several reasons. Therefore, this study will focus on the determination of land use changes, whether commercial or residential that have been occurred in the province, in addition to the loss of agricultural areas and fertile land during the period from 1987 to 2015. Remote sensing and geographic information system (GIS) were utilized in order to delineate and to determine the cause of shrinking in the arable land and fertile land. Satellite images were used to detect the change in land use/land cover by applying selective digital image processing techniques such as supervised classification and change detection. Thematic maps were prepared using GIS software with attribute data about the land uses in the study area, which highlights and show the impact of urban growth on land degradation.


2019 ◽  
Vol 11 (13) ◽  
pp. 1514 ◽  
Author(s):  
Venkatappa ◽  
Sasaki ◽  
Shrestha ◽  
Tripathi ◽  
Ma

As more data and technologies become available, it is important that a simple method is developed for the assessment of land use changes because of the global need to understand the potential climate mitigation that could result from a reduction in deforestation and forest degradation in the tropics. Here, we determined the threshold values of vegetation types to classify land use categories in Cambodia through the analysis of phenological behaviors and the development of a robust phenology-based threshold classification (PBTC) method for the mapping and long-term monitoring of land cover changes. We accessed 2199 Landsat collections using Google Earth Engine (GEE) and applied the Enhanced Vegetation Index (EVI) and harmonic regression methods to identify phenological behaviors of land cover categories during the leaf-shedding phenology (LSP) and leaf-flushing phenology (LFS) seasons. We then generated 722 mean phenology EVI profiles for 12 major land cover categories and determined the threshold values for selected land cover categories in the mid-LSP season. The PBTC pixel-based classified map was validated using very high-resolution (VHR) imagery. We obtained a cumulative overall accuracy of more than 88% and a cumulative overall accuracy of the referenced forest cover of almost 85%. These high accuracy values suggest that the very first PBTC map can be useful for estimating the activity data, which are critically needed to assess land use changes and related carbon emissions under the Reducing Emissions from Deforestation and forest Degradation (REDD+) scheme. We found that GEE cloud-computing is an appropriate tool to use to access remote sensing big data at scale and at no cost.


2020 ◽  
Vol 12 (19) ◽  
pp. 3139
Author(s):  
Chenli Liu ◽  
Wenlong Li ◽  
Gaofeng Zhu ◽  
Huakun Zhou ◽  
Hepiao Yan ◽  
...  

As an important production base for livestock and a unique ecological zone in China, the northeast Tibetan Plateau has experienced dramatic land use/land cover (LULC) changes with increasing human activities and continuous climate change. However, extensive cloud cover limits the ability of optical remote sensing satellites to monitor accurately LULC changes in this area. To overcome this problem in LULC mapping in the Ganan Prefecture, 2000–2018, we used the dense time stacking of multi-temporal Landsat images and random forest algorithm based on the Google Earth Engine (GEE) platform. The dynamic trends of LULC changes were analyzed, and geographical detectors quantitatively evaluated the key driving factors of these changes. The results showed that (1) the overall classification accuracy varied between 89.14% and 91.41%, and the kappa values were greater than 86.55%, indicating that the classification results were reliably accurate. (2) The major LULC types in the study area were grassland and forest, and their area accounted for 50% and 25%, respectively. During the study period, the grassland area decreased, while the area of forest land and construction land increased to varying degrees. The land-use intensity presents multi-level intensity, and it was higher in the northeast than that in the southwest. (3) Elevation and population density were the major driving factors of LULC changes, and economic development has also significantly affected LULC. These findings revealed the main factors driving LULC changes in Gannan Prefecture and provided a reference for assisting in the development of sustainable land management and ecological protection policy decisions.


Sign in / Sign up

Export Citation Format

Share Document