scholarly journals Shoreline Changes due to Abrasion in Pekalongan Utara Sub District Year 2003-2018

Author(s):  
Ndaru Diatama ◽  
Chatarina Muryani ◽  
Rahning Utomowati

<em>The purpose of this research are:  1) analyze the shoreline change in the coastal areas of North Pekalongan Sub-district from 2003 to 2018; 2) Analyze the  land use change in the coastal areas of North Pekalongan from 2003 to 2018; This type of research is a qualitative descriptive with a spatial  approach. Data   obtained from interpretation of  IKONOS image from Google Earth in 2003, year 2013, and year 2018. The research steps were: (1) interpretation  of Google Earth IKONOS image year 2003-2018, (2) Overlay of  shoreline map of year 2003 and year 2018, (3) overlay of land use maps of year 2003- year 2018. The results of the study were: (1) The shoreline of North Pekalongan Sub-district was retreat 7.261 meters up to 94.383 meters. (2) The largest land use changes in North Pekalongan sub district was  the change of land to a flooded land of 624.379 ha or 52.556% of land in the area.</em>

2019 ◽  
Vol 10 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Arif, A.A. ◽  
Machdar,I ◽  
Azmeri ◽  
Achmad,A

Development will increase sporadic land use and tend to cause land degradation. This paper is intended to investigate the effects of land use and land cover processes on Weh-Sabang Island, Indonesia. The duration of LULC changes is analyzed using Google Earth images from 2008 to 2018. Through observations of satellite imagery detected protected area and green space area has been greatly reduced in area and transformed into built-in land which functions as a tourist area and urban built environment. Where as in the coastal areas the change from vacant land to land that was built has also become larger over the past ten years. The increase in land density since 2008 is due to the construction of tourist attractions in hilly areas to coastal areas around Weh-Sabang Island, and can cause changes in the morphology and typology of the city of Sabang. Through the method of calculating the Land Diversity Index, changes can be made in the number of areas that have changed in the period of the year being monitored. The coastal areas experience more land use changes than hilly areas, and through observations of LULC changes across Weh Island, it is expected that efforts will be made to control land use changes in areas that have directly experienced land degradation, and must consider environmental control efforts. As small island like that which happened on Weh-Sabang Island. The westernmost island of the Republic of Indonesia.


Author(s):  
Verónica Lango-Reynoso ◽  
Karla Teresa González-Figueroa ◽  
Fabiola Lango-Reynoso ◽  
María del Refugio Castañeda-Chávez ◽  
Jesús Montoya-Mendoza

Objective: This article describes and analyzes the main concepts of coastal ecosystems, these as a result of research concerning land-use change assessments in coastal areas. Design/Methodology/Approach: Scientific articles were searched using keywords in English and Spanish. Articles regarding land-use change assessment in coastal areas were selected, discarding those that although being on coastal zones and geographic and soil identification did not use Geographic Information System (GIS). Results: A GIS is a computer-based tool for evaluating the land-use change in coastal areas by quantifying variations. It is analyzed through GIS and its contributions; highlighting its importance and constant monitoring. Limitations of the study/Implications: This research analyzes national and international scientific information, published from 2007 to 2019, regarding the land-use change in coastal areas quantified with the digital GIS tool. Findings/Conclusions: GIS are useful tools in the identification and quantitative evaluation of changes in land-use in coastal ecosystems; which require constant evaluation due to their high dynamism.


2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Matheus Supriyanto Rumetna ◽  
Eko Sediyono ◽  
Kristoko Dwi Hartomo

Abstract. Bantul Regency is a part of Yogyakarta Special Province Province which experienced land use changes. This research aims to assess the changes of shape and level of land use, to analyze the pattern of land use changes, and to find the appropriateness of RTRW land use in Bantul District in 2011-2015. Analytical methods are employed including Geoprocessing techniques and analysis of patterns of distribution of land use changes with Spatial Autocorrelation (Global Moran's I). The results of this study of land use in 2011, there are thirty one classifications, while in 2015 there are thirty four classifications. The pattern of distribution of land use change shows that land use change in 2011-2015 has a Complete Spatial Randomness pattern. Land use suitability with the direction of area function at RTRW is 24030,406 Ha (46,995406%) and incompatibility of 27103,115 Ha or equal to 53,004593% of the total area of Bantul Regency.Keywords: Geographical Information System, Land Use, Geoprocessing, Global Moran's I, Bantul Regency. Abstrak. Analisis Perubahan Tata Guna Lahan di Kabupaten Bantul Menggunakan Metode Global Moran’s I. Kabupaten Bantul merupakan bagian dari Provinsi Daerah Istimewa Yogyakarta yang mengalami perubahan tata guna lahan. Penelitian ini bertujuan untuk mengkaji perubahan bentuk dan luas penggunaan lahan, menganalisis pola sebaran perubahan tata guna lahan, serta kesesuaian tata guna lahan terhadap RTRW yang terjadi di Kabupaten Bantul pada tahun 2011-2015. Metode analisis yang digunakan antara lain teknik Geoprocessing serta analisis pola sebaran perubahan tata guna lahan dengan Spatial Autocorrelation (Global Moran’s I). Hasil dari penelitian ini adalah penggunaan tanah pada tahun 2011, terdapat tiga puluh satu klasifikasi, sedangkan pada tahun 2015 terdapat tiga puluh empat klasifikasi. Pola sebaran perubahan tata guna lahan menunjukkan bahwa perubahan tata guna lahan tahun 2011-2015 memiliki pola Complete Spatial Randomness. Kesesuaian tata guna lahan dengan arahan fungsi kawasan pada RTRW adalah seluas 24030,406 Ha atau mencapai 46,995406 % dan ketidaksesuaian seluas 27103,115 Ha atau sebesar 53,004593 % dari total luas wilayah Kabupaten Bantul. Kata Kunci: Sistem Informasi Georafis, tata guna lahan, Geoprocessing, Global Moran’s I, Kabupaten Bantul.


2021 ◽  
Vol 13 (9) ◽  
pp. 4599
Author(s):  
Mohd Alsaleh ◽  
Muhammad Mansur Abdulwakil ◽  
Abdul Samad Abdul-Rahim

Under the current European Union (EU) constitution approved in May 2018, EU countries ought to guarantee that estimated greenhouse-gas releases from land use, land-use change, or forestry are entirely compensated by an equivalent accounted removal of carbon dioxide (CO2) from the air during the period between 2021 and 2030. This study investigates the effect of sustainable hydropower production on land-use change in the European Union (EU28) region countries during 1990–2018, using the fully modified ordinary least squares (FMOLS). The results revealed that land-use change incline with an increase in hydropower energy production. In addition, economic growth, carbon dioxide emissions, and population density are found to be increasing land-use changes, while institutional quality is found to be decreasing land-use change significantly. The finding implies that land-use change in EU28 region countries can be significantly increased by mounting the amount of hydropower energy production to achieve Energy Union aims by 2030. This will finally be spread to combat climate change and environmental pollution. The findings are considered robust as they were checked with DOLS and pooled OLS. The research suggests that the EU28 countries pay attention to the share of hydropower in their renewable energy combination to minimize carbon releases. Politicians and investors in the EU28 region ought to invest further in the efficiency and sustainability of hydropower generation to increase its production and accessibility without further degradation of forest and agricultural conditions. The authorities of the EU28 region should emphasize on efficiency and sustainability of hydropower energy with land-use management to achieve the international commitments for climate, biodiversity, and sustainable development, reduce dependence on fossil fuel, and energy insecurity.


2021 ◽  
Vol 13 (6) ◽  
pp. 3473
Author(s):  
Yong Lai ◽  
Guangqing Huang ◽  
Shengzhong Chen ◽  
Shaotao Lin ◽  
Wenjun Lin ◽  
...  

Anthropogenic land-use change is one of the main drivers of global environmental change. China has been on a fast track of land-use change since the Reform and Opening-up policy in 1978. In view of the situation, this study aims to optimize land use and provide a way to effectively coordinate the development and ecological protection in China. We took East Guangdong (EGD), an underdeveloped but populous region, as a case study. We used land-use changes indexes to demonstrate the land-use dynamics in EGD from 2000 to 2020, then identified the hot spots for fast-growing areas of built-up land and simulated land use in 2030 using the future land-use simulation (FLUS) model. The results indicated that the cropland and the built-up land changed in a large proportion during the study period. Then we established the ecological security pattern (ESP) according to the minimal cumulative resistance model (MCRM) based on the natural and socioeconomic factors. Corridors, buffer zones, and the key nodes were extracted by the MCRM to maintain landscape connectivity and key ecological processes of the study area. Moreover, the study showed the way to identify the conflict zones between future built-up land expansion with the corridors and buffer zones, which will be critical areas of consideration for future land-use management. Finally, some relevant policy recommendations are proposed based on the research result.


2021 ◽  
Author(s):  
Peter H. Verburg ◽  
Žiga Malek ◽  
Sean P. Goodwin ◽  
Cecilia Zagaria

The Conversion of Land Use and its Effects modeling framework (CLUE) was developed to simulate land use change using empirically quantified relations between land use and its driving factors in combination with dynamic modeling of competition between land use types. Being one of the most widely used spatial land use models, CLUE has been applied all over the world on different scales. In this document, we demonstrate how the model can be used to develop a multi-regional application. This means, that instead of developing numerous individual models, the user only prepares one CLUE model application, which then allocates land use change across different regions. This facilitates integration with the Integrated Economic-Environmental Modeling (IEEM) Platform for subnational assessments and increases the efficiency of the IEEM and Ecosystem Services Modeling (IEEMESM) workflow. Multi-regional modelling is particularly useful in larger and diverse countries, where we can expect different spatial distributions in land use changes in different regions: regions of different levels of achieved socio-economic development, regions with different topographies (flat vs. mountainous), or different climatic regions (dry vs humid) within a same country. Accounting for such regional differences also facilitates developing ecosystem services models that consider region specific biophysical characteristics. This manual, and the data that is provided with it, demonstrates multi-regional land use change modeling using the country of Colombia as an example. The user will learn how to prepare the data for the model application, and how the multi-regional run differs from a single-region simulation.


2008 ◽  
Vol 12 (1) ◽  
pp. 159-175 ◽  
Author(s):  
P. J. Ward ◽  
H. Renssen ◽  
J. C. J. H. Aerts ◽  
R. T. van Balen ◽  
J. Vandenberghe

Abstract. In recent years the frequency of high-flow events on the Meuse (northwest Europe) has been relatively great, and flooding has become a major research theme. To date, research has focused on observed discharge records of the last century and simulations of the coming century. However, it is difficult to delineate changes caused by human activities (land use change and greenhouse gas emissions) and natural fluctuations on these timescales. To address this problem we coupled a climate model (ECBilt-CLIO-VECODE) and a hydrological model (STREAM) to simulate daily Meuse discharge in two time-slices: 4000–3000 BP (natural situation), and 1000–2000 AD (includes anthropogenic influence). For 4000–3000 BP the basin is assumed to be almost fully forested; for 1000–2000 AD we reconstructed land use based on historical sources. For 1000–2000 AD the simulated mean annual discharge (260.9 m3 s−1) is significantly higher than for 4000–3000 BP (244.8 m3 s−1), and the frequency of large high-flow events (discharge >3000 m3 s−1) is higher (recurrence time decreases from 77 to 65 years). On a millennial timescale almost all of this increase can be ascribed to land use changes (especially deforestation); the effects of climatic change are insignificant. For the 20th Century, the simulated mean discharge (270.0 m3 s−1) is higher than in any other century studied, and is ca. 2.5% higher than in the 19th Century (despite an increase in evapotranspiration). Furthermore, the recurrence time of large high-flow events is almost twice as short as under natural conditions (recurrence time decreases from 77 to 40 years). On this timescale climate change (strong increase in annual and winter precipitation) overwhelmed land use change as the dominant forcing mechanism.


ASTONJADRO ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Ni Nyoman Samitri Putri ◽  
Ngakan Ketut Acwin Dwijendra

<p>Bali is the most popular tourist destination with Ubud one of the tourist destinations with its beautiful landscapes and rice fields. Mas Village, Ubud is one of the tourist villages that has been inaugurated by the Gianyar Regency Government based on the Decree of the Gianyar Regent Number 429/E-02/HK/2017 regarding the establishment of a Tourism Village. Jalan Rapuan which is located in Tarukan Tourism Village, Mas is one of the strategic corridors in Mas Tourism Village because it is a stretch of rice fields that has a high tourism selling value. The purpose of this study is to identify changes in land use in 2013-2021 due to tourism activities seen from the aspects that have a dominant influence on land use changes. Quantitative method is the method used with primary and secondary data collection methods and stages of analysis in the form of descriptive analysis of tourism activities in Mas Village, statistical-descriptive analysis of land use change with overlay analysis on the Jalan Rapuan corridor. The results showed that there was a change in land use along the Rapuan corridor in 2013-2021 by 14% of the non-built land to be built in the form of tourist accommodation and housing. The indicators analyzed by factor analysis were able to explain important factors, namely external factors of 31.69%, internal factors of 23.821% and regulatory factors of 17.218% with a total of factors able to explain land use change of 72.73%.</p>


2021 ◽  
Vol 933 (1) ◽  
pp. 012010
Author(s):  
S A Nurhayati ◽  
M Marselina ◽  
A Sabar

Abstract Increasing population growth is one of the impacts of the growth of a city or district in an area. This also happened in the Cimahi watershed area. As the population grows, so does the need for land which increases the land-use change in the Cimahi watershed. Land-use changes will affect the surrounding environment and one of them is the river, especially river water quality. As a watershed area, there is one main river that is the source of life as well as the Cimahi watershed, whose main river is the Cimahi River. The purpose of this study was calculated the relationship between land-use change in the Cimahi watershed and the water quality parameters of the Cimahi River. The correlation between the two was calculated using Pearson correlation. Water quality parameters can be seen based on BOD and DO values. BOD and DO values are the opposite because good water quality has high DO values and low BOD values. The correlation between land-use change and BOD was 0.328 is in the area of settlements area. In contrast, to DO values, an increase in settlements/industrial zones will further reduce DO values so that both have a negative correlation, which is indicated by a value of -0,535. The correlation between settlements with pH and temperature values is 0.664 and 0.812. While the correlation between settlements with TSS and TDS values are 0.333 and 0.529, respectively. In this study, it can be seen that there is a relationship between the decline in water quality and changes in land use.


2007 ◽  
Vol 4 (4) ◽  
pp. 2521-2560 ◽  
Author(s):  
P. J. Ward ◽  
H. Renssen ◽  
J. C. J. H. Aerts ◽  
R. T. van Balen ◽  
J. Vandenberghe

Abstract. In recent years the frequency of high-flow events on the Meuse (northwest Europe) has been relatively great, and flooding has become a major research theme. To date, research has focused on observed discharge records of the last century and simulations of the coming century. However, it is difficult to delineate changes caused by human activities (land use change and greenhouse gas emissions) and natural fluctuations on these timescales. To address this problem we coupled a climate model (ECBilt-CLIO-VECODE) and a hydrological model (STREAM) to simulate daily Meuse discharge in two time-slices: 4000–3000 BP (natural situation), and 1000–2000 AD (includes anthropogenic influence). For 4000–3000 BP the basin is assumed to be almost fully forested; for 1000–2000 AD we reconstructed land use based on historical sources. For 1000–2000 AD the simulated mean annual discharge (260.9 m³ s−1) is significantly higher than for 4000–3000 BP (244.8 m³ s−1), and the frequency of large high-flow events (discharge >3000 m³ s−1) is higher (recurrence time decreases from 77 to 65 years). On a millennial timescale almost all of this increase can be ascribed to land use changes (especially deforestation); the effects of climatic change are insignificant. For the 20th Century, the simulated mean discharge (270.0 m³ s−1) is higher than in any other century studied, and is ca. 2.5% higher than in the 19th Century (despite an increase in evapotranspiration). Furthermore, the recurrence time of large high-flow events is almost twice as short as under natural conditions (recurrence time decreases from 77 to 40 years). On this timescale climate change (strong increase in annual and winter precipitation) overwhelmed land use change as the dominant forcing mechanism.


Sign in / Sign up

Export Citation Format

Share Document