scholarly journals SOFTWARE IMPLEMENTATION OF THE TASK FOR AUTOMATED FORMATION DISTRIBUTION OF THE STUDY LOAD FOR THE TEACHING SCIENTIFIC STAFF OF THE DEPARTMENT

Author(s):  
N.I. Loginova ◽  
O.G. Iankovskii ◽  
Yu.G. Loboda ◽  
A.A. Toloknov
1993 ◽  
Vol 32 (05) ◽  
pp. 365-372 ◽  
Author(s):  
T. Timmeis ◽  
J. H. van Bemmel ◽  
E. M. van Mulligen

AbstractResults are presented of the user evaluation of an integrated medical workstation for support of clinical research. Twenty-seven users were recruited from medical and scientific staff of the University Hospital Dijkzigt, the Faculty of Medicine of the Erasmus University Rotterdam, and from other Dutch medical institutions; and all were given a written, self-contained tutorial. Subsequently, an experiment was done in which six clinical data analysis problems had to be solved and an evaluation form was filled out. The aim of this user evaluation was to obtain insight in the benefits of integration for support of clinical data analysis for clinicians and biomedical researchers. The problems were divided into two sets, with gradually more complex problems. In the first set users were guided in a stepwise fashion to solve the problems. In the second set each stepwise problem had an open counterpart. During the evaluation, the workstation continuously recorded the user’s actions. From these results significant differences became apparent between clinicians and non-clinicians for the correctness (means 54% and 81%, respectively, p = 0.04), completeness (means 64% and 88%, respectively, p = 0.01), and number of problems solved (means 67% and 90%, respectively, p = 0.02). These differences were absent for the stepwise problems. Physicians tend to skip more problems than biomedical researchers. No statistically significant differences were found between users with and without clinical data analysis experience, for correctness (means 74% and 72%, respectively, p = 0.95), and completeness (means 82% and 79%, respectively, p = 0.40). It appeared that various clinical research problems can be solved easily with support of the workstation; the results of this experiment can be used as guidance for the development of the successor of this prototype workstation and serve as a reference for the assessment of next versions.


Author(s):  
V. Ya. Vilisov

The article proposes an algorithm for solving a linear programming problem (LPP) based on the use of its representation in the form of an antagonistic matrix game and the subsequent solution of the game by an iterative method. The algorithm is implemented as a computer program. The rate of convergence of the estimates of the solution to the actual value with the required accuracy has been studied. The software implementation shows a high speed of obtaining the LPP solution with acceptable accuracy in fractions or units of seconds. This allows the use algorithm in embedded systems for optimal control.


2020 ◽  
Vol 96 (3s) ◽  
pp. 114-118
Author(s):  
П.С. Поперечный ◽  
И.Ю. Поперечная

Предложен способ вычисления БПФ с унифицированной схемой коммутации от стадии к стадии. Представлено итеративное выражение для аппаратной или программной реализации схемы вычисления. Для предложенных схем описана возможность реконфигурирования для вычисления БПФ различного числа отсчетов, при этом поворотные множители остаются прежними и нет необходимости делать их переменными. The article offers a method for FFT calculation by means of unified communication scheme stage-by-stage. There is an iterating equation for hardware and software implementation. Also, it provides the reconfiguration of schemes by different samples number. The rotating multipliers are the same like in non-reconfigurable (fixed) communication scheme. So, the offered approach does not require additional hardware or software resources.


2020 ◽  
Vol 1680 ◽  
pp. 012035
Author(s):  
A K Matolygin ◽  
N A Shalyapina ◽  
M L Gromov ◽  
S N Torgaev

Sign in / Sign up

Export Citation Format

Share Document