scholarly journals Ballast water treatment plant

2019 ◽  
Vol 2 ◽  
pp. 104-108
Author(s):  
I.Z. Maslov ◽  
◽  
A.H. Danilian ◽  
N.B. Tiron-Vorobiova ◽  
O.R. Romanovska ◽  
...  
Author(s):  
Robin Fearnley

Ratification of the International Maritime Organization (IMO) International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWMC)[i] has now forced the hand of operators and ship owners to comply with the BWM, and without a great deal of time to react. The need to integrate and operate Ballast Water Treatment (BWT) Systems on In-Service ships, however, is not new, and BMT have recent and relevant experience in end-to-end BWT system solutions. In 2011 BMT Defence Services Ltd (BMT) produced the installation specification to enable A and P Falmouth Ltd (A and P) to carry out a ballast water treatment plant retrofit installation on the RFA Bay Class ships (i.e. RFA MOUNTS BAY, LARGS BAY and CARDIGAN BAY), enabling the ship to be approved and operated in compliance with the BWMC. In addition, BMT produced documentation to enable A and P to arrange, manage and perform the necessary test, trials and commissioning to prove the equipment installation and that it can be operated in accordance with the requirements of the BWMC. The objective of this paper is to take the reader through the process of design and embodiment of a BWT system retrofit on a relatively complex (with respect to the ballast system) ship. The Bay Class ships are Landing Ship Dock (Auxiliary) ships with separate forward and aft ballast systems (to allow the ships to function in their amphibious roles by way of their stern dock), and a ship wide Ballast Stripping system. Key design and engineering considerations are discussed below and recommendations for the installation of a ballast water treatment system are also offered. International Convention for the Control and Management of Ships' Ballast Water and Sediments, International Maritime Organization, Adoption: 13 February 2004; Entry into force: 8 September 2017.


1981 ◽  
Vol 1981 (1) ◽  
pp. 55-61
Author(s):  
Stanley D. Rice ◽  
Sid Korn ◽  
Christine C. Brodersen ◽  
Stephen A. Lindsay ◽  
Scott A. Andrews

ABSTRACT Approximately 12 million gallons of oily ballast water is taken ashore and treated daily at the Alyeska treatment plant, where tankers take on crude oil at the terminus of the Trans Alaska pipeline near Valdez, Alaska. Most oil is removed, but some light aromatic hydrocarbons (1 to 16 parts per million) remain in the large volume of discharged effluent. Between May and July, the concentration of aromatic hydrocarbons in the treated effluent (measured by gas chromatography) generally declined as the seasonal temperatures increased. We measured the toxicity of the effluent on site at Valdez. For the larvae of crustaceans and of fish the median lethal concentration LC50 was between 10 and 2p percent of treated effluent in 96-hour static tests. For salmon fry and shrimp in repeated acute flow-through assays, the (LC50) was quite consistent, between 20 and 40 percent of treated effluent. Because the concentration of aromatic hydrocarbons was much lower in the later tests but the toxicity of the effluent was not lower, toxicants other than aromatic hydrocarbons must contribute significantly to the toxicity of the effluent from the ballast-water treatment plant.


2019 ◽  
Vol 10 (1) ◽  
pp. 16
Author(s):  
V. MANE-DESHMUKH PRASHANT ◽  
B. MORE ASHWINI ◽  
B. P. LADGAOKAR ◽  
S. K. TILEKAR ◽  
◽  
...  

2017 ◽  
Vol 16 (10) ◽  
pp. 2303-2315 ◽  
Author(s):  
Djamel Ghernaout ◽  
Abdelmalek Badis ◽  
Ghania Braikia ◽  
Nadjet Mataam ◽  
Moussa Fekhar ◽  
...  

2008 ◽  
Author(s):  
Angelina Johnston ◽  
Kevin O'Connor ◽  
Todd Criswell

2001 ◽  
Vol 1 (3) ◽  
pp. 91-96 ◽  
Author(s):  
L.J. Hem ◽  
E.A. Vik ◽  
A. Bjørnson-Langen

In 1995 the new Skullerud water treatment plant was put into operation. The new water treatment includes colour removal and corrosion control with an increase of pH, alkalinity and calcium concentration in addition to the old treatment, which included straining and chlorination only. Comparative measurements of internal corrosion were conducted before and after the installation of the new treatment plant. The effect of the new water treatment on the internal corrosion was approximately a 20% reduction in iron corrosion and a 70% reduction in copper corrosion. The heavy metals content in standing water was reduced by approximately 90%. A separate internal corrosion monitoring programme was conducted, studying the effects of other water qualities on the internal corrosion rate. Corrosion coupons were exposed to the different water qualities for nine months. The results showed that the best protection of iron was achieved with water supersaturated with calcium carbonate. Neither a high content of free carbon dioxide or the use of the corrosion inhibitor sodium silicate significantly reduced the iron corrosion rate compared to the present treated water quality. The copper corrosion rate was mainly related to the pH in the water.


2002 ◽  
Vol 2 (1) ◽  
pp. 233-240 ◽  
Author(s):  
J. Cromphout ◽  
W. Rougge

In Harelbeke a Water Treatment Plant with a capacity of 15,000 m3/day, using Schelde river water has been in operation since April 1995. The treatment process comprises nitrification, dephosphatation by direct filtration, storage into a reservoir, direct filtration, granular activated carbon filtration and disinfection. The design of the three-layer direct filters was based on pilot experiments. The performance of the plant during the five years of operation is discussed. It was found that the removal of atrazin by activated carbon depends on the water temperature.


Sign in / Sign up

Export Citation Format

Share Document