scholarly journals EFFECT OF FORMING TOOLS NOSE ON THE FORMABILITY OF SINGLE POINT INCREMENTAL SHEET FORMING.

2021 ◽  
Vol 21 (1) ◽  
pp. 1-14
Author(s):  
Entesar Nayyef Farhan

In this paper the FE simulation and experimental equipment and design of the system for deformation by single point incremental sheet metal forming are presented. The formability is executed at room temperature and needs the milling machine, the tool of hemispherical head and toroidal head applied to deform the sheet, whereas translates from the peripheral of the sheet to its focus that additionally driving the sheet down. The blank is distorted increment by increment into the required shape via hemispherical or toroidal nose instrument going along a circular way. In the present investigation, the deformation’s analyses were down on the aluminum 7075 compound with thickness (0.9mm) and various device nose are enormously impact on the contact region and its observed that the hemispherical apparatus gives the best outcome. Close to this investigation consequence of the impact of shaping instrument nose on the formability is displayed. The ANSYS results are comparison with results obtained experimentally and it's discovered the deviation about 8% and this is expected to the criteria of spring-back.

2012 ◽  
Vol 504-506 ◽  
pp. 863-868 ◽  
Author(s):  
Miklos Tisza ◽  
Péter Zoltán Kovács ◽  
Zsolt Lukács

Development of new technologies and processes for small batch and prototype production of sheet metal components has a very important role in the recent years. The reason is the quick and efficient response to the market demands. For this reasons new manufacturing concepts have to be developed in order to enable a fast and reliable production of complex components and parts without investing in special forming machines. The need for flexible forming processes has been accelerated during the last 15 years, and by these developments the technology reaches new extensions. Incremental sheet metal forming (ISMF) may be regarded as one of the promising developments for these purposes. A comprehensive research work is in progress at the University of Miskolc (Hungary) to study the effect of important process parameters with particular emphasis on the shape and dimensional accuracy of the products and particularly on the formability limitations of the process. In this paper, some results concerning the determination of forming limit diagrams for single point incremental sheet metal forming will be described.


Author(s):  
Rakesh Lingam ◽  
Anirban Bhattacharya ◽  
Javed Asghar ◽  
N. Venkata Reddy

Incremental Sheet Metal Forming (ISMF) is a flexible sheet metal forming process that enables forming of complex three dimensional components by successive local deformations without using component specific tooling. ISMF is also regarded as die-less manufacturing process and in the absence of part-specific dies, geometric accuracy of formed components is inferior to that of their conventional counterparts. In Single Point Incremental Forming (SPIF), the simplest variant of ISMF, bending near component opening region is unavoidable due to lack of support. The bending in the component opening region can be reduced to a larger extent by another variant of ISMF namely Double Sided Incremental Forming (DSIF) in which a moving tool is used to support the sheet locally at the deformation zone. However the overall geometry of formed components still has unacceptable deviation from the desired geometry. Experimental observation and literature indicates that the supporting tool loses contact with the sheet after forming certain depth. Present work demonstrates a methodology to enhance geometric accuracy of formed components by compensating for tool and sheet deflection due to forming forces. Forming forces necessary to predict compensations are obtained using force equilibrium method along with thickness calculation methodology developed using overlap that occurs during forming (instead of using sine law). Results indicate that there is significant improvement in accuracy of the components produced using compensated tool paths.


2009 ◽  
Vol 83-86 ◽  
pp. 1113-1120 ◽  
Author(s):  
Mehdi Vahdati ◽  
Mohammad Sedighi ◽  
Hossein Khoshkish

In this paper, spring-back and its effect on geometrical and dimensional accuracy of incremental sheet metal forming (ISMF) process has been studied. The influence of process parameters such as: vertical step size, sheet thickness, tool diameter, feed rate and spindle speed have been investigated. A series of experimental tests have been carried out for a straight groove bead-shape part made of aluminum sheets. A reliable statistical analysis has been carried out to extract the importance of each parameter. The obtained model permits to select appropriate process parameters to reduce spring-back effectively.


Sign in / Sign up

Export Citation Format

Share Document