scholarly journals An instrumental orchestration for online course at the university level

Apertura ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 22-37
Author(s):  
José Orozco-Santiago ◽  
◽  
Carlos Armando Cuevas-Vallejo ◽  

In this article, we present a proposal for instrumental orchestration that organizes the use of technological environments in online mathematics education, in the synchronous mode for the concepts of eigenvalue and eigenvector of a first linear algebra course with engineering students. We used the instrumental orchestration approach as a theoretical framework to plan and organize the artefacts involved in the environment (didactic configuration) and the ways in which they are implemented (exploitation modes). The activities were designed using interactive virtual didactic scenarios, in a dynamic geometry environment, guided exploration worksheets with video and audio recordings of the work of the students, individually or in pairs. The results obtained are presented and the orchestrations of a pedagogical sequence to introduce the concepts of eigenvalue and eigenvector are briefly discussed. This work allowed us to identify new instrumental orchestrations for online mathematics education.

2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Chinweike Eseonu ◽  
Martin A Cortes

There is a culture of disengagement from social consideration in engineering disciplines. This means that first year engineering students, who arrive planning to change the world through engineering, lose this passion as they progress through the engineering curriculum. The community driven technology innovation and investment program described in this paper is an attempt to reverse this trend by fusing community engagement with the normal engineering design process. This approach differs from existing project or trip based approaches – outreach – because the focus is on local communities with which the university team forms a long-term partnership through weekly in-person meetings and community driven problem statements – engagement.


ZDM ◽  
2021 ◽  
Author(s):  
Haim Elgrably ◽  
Roza Leikin

AbstractThis study was inspired by the following question: how is mathematical creativity connected to different kinds of expertise in mathematics? Basing our work on arguments about the domain-specific nature of expertise and creativity, we looked at how participants from two groups with two different types of expertise performed in problem-posing-through-investigations (PPI) in a dynamic geometry environment (DGE). The first type of expertise—MO—involved being a candidate or a member of the Israeli International Mathematical Olympiad team. The second type—MM—was comprised of mathematics majors who excelled in university mathematics. We conducted individual interviews with eight MO participants who were asked to perform PPI in geometry, without previous experience in performing a task of this kind. Eleven MMs tackled the same PPI task during a mathematics test at the end of a 52-h course that integrated PPI. To characterize connections between creativity and expertise, we analyzed participants’ performance on the PPI tasks according to proof skills (i.e., auxiliary constructions, the complexity of posed tasks, and correctness of their proofs) and creativity components (i.e., fluency, flexibility and originality of the discovered properties). Our findings demonstrate significant differences between PPI by MO participants and by MM participants as reflected in the more creative performance and more successful proving processes demonstrated by MO participants. We argue that problem posing and problem solving are inseparable when MO experts are engaged in PPI.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 662
Author(s):  
María Jesús Santos ◽  
Alejandro Medina ◽  
José Miguel Mateos Roco ◽  
Araceli Queiruga-Dios

Sophomore students from the Chemical Engineering undergraduate Degree at the University of Salamanca are involved in a Mathematics course during the third semester and in an Engineering Thermodynamics course during the fourth one. When they participate in the latter they are already familiar with mathematical software and mathematical concepts about numerical methods, including non-linear equations, interpolation or differential equations. We have focused this study on the way engineering students learn Mathematics and Engineering Thermodynamics. As students use to learn each matter separately and do not associate Mathematics and Physics, they separate each matter into different and independent compartments. We have proposed an experience to increase the interrelationship between different subjects, to promote transversal skills, and to make the subjects closer to real work. The satisfactory results of the experience are exposed in this work. Moreover, we have analyzed the results obtained in both courses during the academic year 2018–2019. We found that there is a relation between both courses and student’s final marks do not depend on the course.


2021 ◽  
Vol 11 (2) ◽  
pp. 56
Author(s):  
Saray Busto ◽  
Michael Dumbser ◽  
Elena Gaburro

In this article we present a case study concerning a simple but efficient technical and logistic concept for the realization of blended teaching of mathematics and its applications in theoretical mechanics that was conceived, tested and implemented at the Department of Civil, Environmental and Mechanical Engineering (DICAM) of the University of Trento, Italy, during the COVID-19 pandemic. The concept foresees traditional blackboard lectures with a reduced number of students physically present in the lecture hall, while the same lectures are simultaneously made available to the remaining students, who cannot be present, via high-quality low-bandwidth online streaming. The case study presented in this paper was implemented in a single University Department and was carried out with a total of n=1011 students and n=68 professors participating in the study. Based on our first key assumption that traditional blackboard lectures, including the gestures and the facial expressions of the professor, are even nowadays still a very efficient and highly appreciated means of teaching mathematics at the university, this paper deliberately does not want to propose a novel pedagogical concept of how to teach mathematics at the undergraduate level, but rather presents a technical concept of how to preserve the quality of traditional blackboard lectures even during the COVID-19 pandemic and how to make them available to the students at home via online streaming with adequate audio and video quality even at low internet bandwidth. The second key assumption of this paper is that the teaching of mathematics is a dynamic creative process that requires the physical presence of students in the lecture hall as audience so that the professor can instantaneously fine-tune the evolution of the lecture according to his/her perception of the level of attention and the facial expressions of the students. The third key assumption of this paper is that students need to have the possibility to interact with each other personally, especially in the first years at the university. We report on the necessary hardware, software and logistics, as well as on the perception of the proposed blended lectures by undergraduate students from civil and environmental engineering at the University of Trento, Italy, compared to traditional lectures and also compared to the pure online lectures that were needed as emergency measure at the beginning of the COVID-19 pandemic. The evaluation of the concept was carried out with the aid of quantitative internet bandwidth measurements, direct comparison of transmitted video signals and a careful analysis of ex ante and ex post online questionnaires sent to students and professors.


Author(s):  
A Gonzalez-Buelga ◽  
I Renaud-Assemat ◽  
B Selwyn ◽  
J Ross ◽  
I Lazar

This paper focuses on the development, delivery and preliminary impact analysis of an engineering Work Experience Week (WEW) programme for KS4 students in the School of Civil, Aerospace and Mechanical Engineering (CAME) at the University of Bristol, UK. Key stage 4, is the legal term for the two years of school education which incorporate GCSEs in England, age 15–16. The programme aims to promote the engineering profession among secondary school pupils. During the WEW, participants worked as engineering researchers: working in teams, they had to tackle a challenging engineering design problem. The experience included hands-on activities and the use of state-of-the-art rapid prototyping and advanced testing equipment. The students were supervised by a group of team leaders, a diverse group of undergraduate and postgraduate engineering students, technical staff, and academics at the School of CAME. The vision of the WEW programme is to transmit the message that everybody can be an engineer, that there are plenty of different routes into engineering that can be taken depending on pupils’ strengths and interests and that there are a vast amount of different engineering careers and challenges to be tackled by the engineers of the future. Feedback from the participants in the scheme has been overwhelmingly positive.


2021 ◽  
Vol LXIV (1) ◽  
pp. 62-83
Author(s):  
Lyubka Aleksieva ◽  

This paper presents a theoretical research on electronic resources provided for mathematics education in primary school including online education, which has become ubiquitous as a result of the COVID-19 pandemic. Various aspects and forms of application of e-resources in mathematics education are explored in the literature, but the issue of their quality is less studied. E-resources potential to dynamically illustrate the mathematical learning content is defined as their main advantage, but this potential could be realized only in compliance with the principles of multimedia, as well as the requirements for accessibility, ergonomics and visual design. Therefore, in this study the parameters for the quality of e-resources for mathematics education in primary school are derived and specific criteria and requirements for their quality are proposed. Thus, in addition to providing a basis for future research, this paper could serve to primary teachers as a guide for measuring the quality of e-resources that they select or create for online mathematics education.


Sign in / Sign up

Export Citation Format

Share Document