scholarly journals HYBRID IMPROVED BACTERIAL SWARM OPTIMIZATION ALGORITHM FOR HAND-BASED MULTIMODAL BIOMETRIC AUTHENTICATION SYSTEM

Author(s):  
Karthikeyan Shanmugasundaram ◽  
Ahmad Sufril Azlan Mohmed ◽  
Nur Intan Raihana Ruhaiyem

This paper proposes a Hybrid Improved Bacterial Swarm (HIBS) optimization algorithm for the minimization of Equal Error Rate (EER) as a performance measure in a hand-based multimodal biometric authentication system. The hybridization of the algorithm was conducted by incorporating Bacterial Foraging Optimization (BFO) and Particle Swarm Optimization (PSO) algorithm to mitigate weaknesses in slow and premature convergence. In the proposed HIBS algorithm, the slow convergence of BFO algorithm was mitigated by using the random walk procedure of Firefly algorithm as an adaptive varying step size instead of using fixed step size. Concurrently, the local optima trap (i.e. premature convergence) of PSO algorithm was averted by using mutation operator. The HIBS algorithm was tested using benchmark functions and compared against classical BFO, PSO and other hybrid algorithms like Genetic Algorithm-Bacterial Foraging Optimization (GA-BFO), Genetic Algorithm-Particle Swarm Optimization (GA-PSO) and other BFO-PSO algorithms to prove its exploration and exploitation ability. It was observed from the experimental results that the EER values, after the influence of the proposed HIBS algorithm, dropped to 0.0070% and 0.0049% from 1.56% and 0.86% for the right and left hand images of the Bosphorus database, respectively. The results indicated the ability of the proposed HIBS in optimization problem where it optimized relevant weights in an authentication system.  

Author(s):  
GAO-WEI YAN ◽  
ZHAN-JU HAO

This paper introduces a novel numerical stochastic optimization algorithm inspired from the behaviors of cloud in the natural world, which is designated as atmosphere clouds model optimization (ACMO) algorithm. It is tried to simulate the generation behavior, move behavior and spread behavior of cloud in a simple way. The ACMO algorithm has been tested on a set of benchmark functions in comparison with two other evolutionary-based algorithms: particle swarm optimization (PSO) algorithm and genetic algorithm (GA). The results demonstrate that the proposed algorithm has certain advantages in solving multimodal functions, while the PSO algorithm has a better result in terms of convergence accuracy. In conclusion, the ACMO algorithm is an effective method in solving optimization problems.


Author(s):  
Mehdi Darbandi ◽  
Amir Reza Ramtin ◽  
Omid Khold Sharafi

Purpose A set of routers that are connected over communication channels can from network-on-chip (NoC). High performance, scalability, modularity and the ability to parallel the structure of the communications are some of its advantages. Because of the growing number of cores of NoC, their arrangement has got more valuable. The mapping action is done based on assigning different functional units to different nodes on the NoC, and the way it is done contains a significant effect on implementation and network power utilization. The NoC mapping issue is one of the NP-hard problems. Therefore, for achieving optimal or near-optimal answers, meta-heuristic algorithms are the perfect choices. The purpose of this paper is to design a novel procedure for mapping process cores for reducing communication delays and cost parameters. A multi-objective particle swarm optimization algorithm standing on crowding distance (MOPSO-CD) has been used for this purpose. Design/methodology/approach In the proposed approach, in which the two-dimensional mesh topology has been used as base construction, the mapping operation is divided into two stages as follows: allocating the tasks to suitable cores of intellectual property; and plotting the map of these cores in a specific tile on the platform of NoC. Findings The proposed method has dramatically improved the related problems and limitations of meta-heuristic algorithms. This algorithm performs better than the particle swarm optimization (PSO) and genetic algorithm in convergence to the Pareto, producing a proficiently divided collection of solving ways and the computational time. The results of the simulation also show that the delay parameter of the proposed method is 1.1 per cent better than the genetic algorithm and 0.5 per cent better than the PSO algorithm. Also, in the communication cost parameter, the proposed method has 2.7 per cent better action than a genetic algorithm and 0.16 per cent better action than the PSO algorithm. Originality/value As yet, the MOPSO-CD algorithm has not been used for solving the task mapping issue in the NoC.


2012 ◽  
Vol 468-471 ◽  
pp. 2745-2748
Author(s):  
Sheng Long Yu ◽  
Yu Ming Bo ◽  
Zhi Min Chen ◽  
Kai Zhu

A particle swarm optimization algorithm (PSO) is presented for vehicle path planning in the paper. Particle swarm optimization proposed by Kennedy and Eberhart is derived from the social behavior of the birds foraging. Particle swarm optimization algorithm a kind of swarm-based optimization method.The simulation experiments performed in this study show the better vehicle path planning ability of PSO than that of adaptive genetic algorithm and genetic algorithm. The experimental results show that the vehicle path planning by using PSO algorithm has the least cost and it is indicated that PSO algorithm has more excellent vehicle path planning ability than adaptive genetic algorithm,genetic algorithm.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 229 ◽  
Author(s):  
Fu-Lan Ye ◽  
Chou-Yuan Lee ◽  
Zne-Jung Lee ◽  
Jian-Qiong Huang ◽  
Jih-Fu Tu

In this paper, particle swarm optimization is incorporated into an improved bacterial foraging optimization algorithm, which is applied to classifying imbalanced data to solve the problem of how original bacterial foraging optimization easily falls into local optimization. In this study, the borderline synthetic minority oversampling technique (Borderline-SMOTE) and Tomek link are used to pre-process imbalanced data. Then, the proposed algorithm is used to classify the imbalanced data. In the proposed algorithm, firstly, the chemotaxis process is improved. The particle swarm optimization (PSO) algorithm is used to search first and then treat the result as bacteria, improving the global searching ability of bacterial foraging optimization (BFO). Secondly, the reproduction operation is improved and the selection standard of survival of the cost is improved. Finally, we improve elimination and dispersal operation, and the population evolution factor is introduced to prevent the population from stagnating and falling into a local optimum. In this paper, three data sets are used to test the performance of the proposed algorithm. The simulation results show that the classification accuracy of the proposed algorithm is better than the existing approaches.


2013 ◽  
Vol 401-403 ◽  
pp. 1328-1335 ◽  
Author(s):  
Yu Feng Yu ◽  
Guo Li ◽  
Chen Xu

Particle swarm optimization (PSO) algorithm has the ability of global optimization , but it often suffers from premature convergence problem, especially in high-dimensional multimodal functions. In order to overcome the premature property and improve the global optimization performance of PSO algorithm, this paper proposes an improved particle swarm optimization algorithm , called IPSO. The simulation results of eight unimodal/multimodal benchmark functions demonstrate that IPSO is superior in enhancing the global convergence performance and avoiding the premature convergence problem to SPSO no matter on unimodal or multimodal high-dimensional (100 real-valued variables) functions.


2014 ◽  
Vol 599-601 ◽  
pp. 1453-1456
Author(s):  
Ju Wang ◽  
Yin Liu ◽  
Wei Juan Zhang ◽  
Kun Li

The reconstruction algorithm has a hot research in compressed sensing. Matching pursuit algorithm has a huge computational task, when particle swarm optimization has been put forth to find the best atom, but it due to the easy convergence to local minima, so the paper proposed a algorithm ,which based on improved particle swarm optimization. The algorithm referred above combines K-mean and particle swarm optimization algorithm. The algorithm not only effectively prevents the premature convergence, but also improves the K-mean’s local. These findings indicated that the algorithm overcomes premature convergence of particle swarm optimization, and improves the quality of image reconstruction.


2021 ◽  
Vol 11 (2) ◽  
pp. 839
Author(s):  
Shaofei Sun ◽  
Hongxin Zhang ◽  
Xiaotong Cui ◽  
Liang Dong ◽  
Muhammad Saad Khan ◽  
...  

This paper focuses on electromagnetic information security in communication systems. Classical correlation electromagnetic analysis (CEMA) is known as a powerful way to recover the cryptographic algorithm’s key. In the classical method, only one byte of the key is used while the other bytes are considered as noise, which not only reduces the efficiency but also is a waste of information. In order to take full advantage of useful information, multiple bytes of the key are used. We transform the key into a multidimensional form, and each byte of the key is considered as a dimension. The problem of the right key searching is transformed into the problem of optimizing correlation coefficients of key candidates. The particle swarm optimization (PSO) algorithm is particularly more suited to solve the optimization problems with high dimension and complex structure. In this paper, we applied the PSO algorithm into CEMA to solve multidimensional problems, and we also add a mutation operator to the optimization algorithm to improve the result. Here, we have proposed a multibyte correlation electromagnetic analysis based on particle swarm optimization. We verified our method on a universal test board that is designed for research and development on hardware security. We implemented the Advanced Encryption Standard (AES) cryptographic algorithm on the test board. Experimental results have shown that our method outperforms the classical method; it achieves approximately 13.72% improvement for the corresponding case.


2020 ◽  
Vol 10 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Neeti Kashyap ◽  
A. Charan Kumari ◽  
Rita Chhikara

AbstractWeb service compositions are commendable in structuring innovative applications for different Internet-based business solutions. The existing services can be reused by the other applications via the web. Due to the availability of services that can serve similar functionality, suitable Service Composition (SC) is required. There is a set of candidates for each service in SC from which a suitable candidate service is picked based on certain criteria. Quality of service (QoS) is one of the criteria to select the appropriate service. A standout amongst the most important functionality presented by services in the Internet of Things (IoT) based system is the dynamic composability. In this paper, two of the metaheuristic algorithms namely Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are utilized to tackle QoS based service composition issues. QoS has turned into a critical issue in the management of web services because of the immense number of services that furnish similar functionality yet with various characteristics. Quality of service in service composition comprises of different non-functional factors, for example, service cost, execution time, availability, throughput, and reliability. Choosing appropriate SC for IoT based applications in order to optimize the QoS parameters with the fulfillment of user’s necessities has turned into a critical issue that is addressed in this paper. To obtain results via simulation, the PSO algorithm is used to solve the SC problem in IoT. This is further assessed and contrasted with GA. Experimental results demonstrate that GA can enhance the proficiency of solutions for SC problem in IoT. It can also help in identifying the optimal solution and also shows preferable outcomes over PSO.


Sign in / Sign up

Export Citation Format

Share Document