Relationship between Protein kinase C isoforms, Telomerase and Alpha- fetoprotein through PI3K/AKT/mTOR pathway in Hepatocellular carcinoma

MedPharmRes ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 12-26
Author(s):  
Rita Ammoury ◽  
Roula Tahtouh ◽  
Nadine Mahfouz ◽  
Raia Doumit ◽  
Charbel Khalil ◽  
...  

Protein kinase C (PKC) family has been an alluring objective for new cancer drug discovery. It has been reported to regulate telomerase in several cancer types. Our team had previously used telomerase to elucidate alpha-fetoprotein (AFP) modulation in hepatocellular carcinoma (HCC). The aim of this study was to investigate the interrelationships among PKC isoforms, telomerase and AFP in HCC. PKCα and PKCδ were the most expressed isoforms in HepG2/C3A, PLC/PRF/5, SNU-387 and SKOV-3 cells. Following the upregulation of AFP using pCMV3-AFP and the human telomerase reverse transcriptase (hTERT) using a construct expressing a wild-type hTERT, and after their inhibition with all-trans retinoic acid and hTERT siRNA each respectively, we found that the expression of PKCα, PKCβI, PKCβII and PKCδ was affected by the variation of AFP and hTERT mRNA levels. An increase in AFP expression and secretion was observed after gene silencing of PKCα, PKCβ, PKCδ, and PKCε in HepG2/C3A. A similar pattern was observed in transfected PLC/PRF/5 cells, however PKCδ isoform silencing decreased AFP expression. Furthermore, telomerase activity was quantified using quantitative telomeric repeat amplification protocol. The variations in hTERT expression and telomerase activity were similar to those of AFP. Further investigation showed that PKC isoforms regulate AFP and hTERT expression levels through PI3K/AKT/mTOR pathway in HepG2/C3A and PLC/PRF/5 cells. Thus, these results show for the first time a possible interrelationship that links PKC isoforms to both AFP and hTERT via PI3K/AKT/mTOR pathway in HCC.

1996 ◽  
Vol 271 (2) ◽  
pp. G293-G303 ◽  
Author(s):  
R. T. Stravitz ◽  
Y. P. Rao ◽  
Z. R. Vlahcevic ◽  
E. C. Gurley ◽  
W. D. Jarvis ◽  
...  

We have recently shown that taurocholate (TCA) represses the transcriptional activity of cholesterol 7 alpha-hydroxylase, the rate-limiting enzyme of the bile acid biosynthetic pathway, through a protein kinase C (PKC)-dependent mechanism in primary cultures of rat hepatocytes. The present studies sought to determine the mechanisms by which bile acids activate hepatic PKC activity and the consequences of this activation on isoform distribution and cholesterol 7 alpha-hydroxylase mRNA levels. TCA (12.5-100 microM for 15 min) increased membrane-associated "classic" isoenzyme cPKC-alpha and "novel" isoenzymes nPKC-delta, and nPKC by two- to sixfold. Membrane-associated PKC progressively increased, and cytosolic PKC decreased, for 1 h after the addition of TCA (50 microM); after 24 h whole cell cPKC-alpha, nPKC-delta, and nPKC were downregulated by 35-55% compared with untreated controls. In a reconstituted assay system, TCA or taurodeoxycholate (10-100 microM) increased calcium-dependent and -independent PKC activity by three- and fourfold, respectively. Taurine-conjugated bile acids stimulated PKC activity in proportion to their hydrophobicity index (r = 0.99). Finally, cholesterol 7 alpha-hydroxylase mRNA was repressed > 75% by phorbol 12-myristate 13-acetate (100 nM for 3 h), a nonselective activator of PKC isoforms. In contrast, selective cPKC-alpha activation with thymeleatoxin (100 nM for 3 h) had no significant effect on cholesterol 7 alpha-hydroxylase mRNA levels. We conclude that bile acids activate hepatocellular PKC, resulting in sequential redistribution and down-regulation of calcium-dependent and -independent isoforms. The calcium-independent PKC isoforms may mediate the repression of cholesterol 7 alpha-hydroxylase mRNA by TCA.


1993 ◽  
Vol 70 (05) ◽  
pp. 800-806 ◽  
Author(s):  
C Ternisien ◽  
M Ramani ◽  
V Ollivier ◽  
F Khechai ◽  
T Vu ◽  
...  

SummaryTissue factor (TF) is a transmembrane receptor which, in association with factors VII and Vila, activates factor IX and X, thereby activating the coagulation protease cascades. In response to bacterial lipopolysaccharide (LPS) monocytes transcribe, synthesize and express TF on their surface. We investigated whether LPS-induced TF in human monocytes is mediated by protein kinase C (PKC) activation. The PKC agonists phorbol 12- myristate 13-acetate (PMA) and phorbol 12, 13 dibutyrate (PdBu) were both potent inducers of TF in human monocytes, whereas 4 alpha-12, 13 didecanoate (4 a-Pdd) had no such effect. Both LPS- and PMA-induced TF activity were inhibited, in a concentration dependent manner, by three different PKC inhibitors: H7, staurosporine and calphostin C. TF antigen determination confirmed that LPS-induced cell-surface TF protein levels decreased in parallel to TF functional activity under staurosporine treatment. Moreover, Northern blot analysis of total RNA from LPS- or PMA-stimulated monocytes showed a concentration-dependent decrease in TF mRNA levels in response to H7 and staurosporine. The decay rate of LPS-induced TF mRNA evaluated after the arrest of transcription by actinomycin D was not affected by the addition of staurosporine, suggesting that its inhibitory effect occurred at a transcriptional level. We conclude that LPS-induced production of TF and its mRNA by human monocytes are dependent on PKC activation.


1998 ◽  
Vol 342 (2-3) ◽  
pp. 311-317 ◽  
Author(s):  
J.Adolfo Garcı́a-Sáinz ◽  
Rocı́o Alcántara-Hernández ◽  
José Vázquez-Prado

2001 ◽  
Vol 169 (1) ◽  
pp. 145-151 ◽  
Author(s):  
HJ Armbrecht ◽  
MA Boltz ◽  
TL Hodam ◽  
VB Kumar

Non-transformed rat intestinal epithelial cell (IEC) lines were used to study the action of 1,25-dihydroxyvitamin D(3) (1,25(OH)2D) in the intestine. The capacity of 1,25(OH)2D to increase the expression of the cytochrome P450 component of the vitamin D 24-hydroxylase (CYP24) was determined in IEC-6 and IEC-18 cell lines. In IEC-6 cells, which are derived from crypt cells isolated from the whole small intestine, 1,25(OH)2D markedly increased expression of CYP24 protein and mRNA within 12 h. In contrast, in IEC-18 cells, which are derived from crypt cells from the ileum only, 1,25(OH)2D did not increase expression of CYP24 until 24-48 h. The maximal levels of CYP24 mRNA seen in the IEC-18 cells were only 31% of the maximal levels seen in the IEC-6 cells. In the presence of 1,25(OH)2D, phorbol esters rapidly increased CYP24 mRNA levels in IEC-18 cells from almost undetectable to levels seen in IEC-6 cells. Protein kinase inhibitors abolished the stimulation by 1,25(OH)2D and by phorbol esters in both cell lines. Stimulation of mRNA levels by phorbol esters required new protein synthesis but stimulation by 1,25(OH)2D did not. These studies demonstrated that the rapid action of 1,25(OH)2D in IEC-6 cells is related to the activation of protein kinase C, an event which is missing in the IEC-18 cells. This differential response to 1,25(OH)2D probably takes place at a post-receptor site, since the number of vitamin D receptors in each cell line was found to be similar.


1993 ◽  
Vol 292 (1) ◽  
pp. 105-111 ◽  
Author(s):  
L Dory

Phorbol ester-mediated differentiation of THP-1 cells (a human monocytic cell line) into mature macrophages is associated with a transcriptional induction of apolipoprotein E (apoE) expression [Auwerx, Deeb, Brunzell, Peng and Chait (1988) Biochemistry 27, 2651-2655]. Endotoxin, on the other hand, which may also act through activation of protein kinase C, is a potent inhibitor of apoE expression in mouse macrophages [Werb and Chin (1983) J. Biol. Chem. 258, 10642-10648]. The present experiments examine the effect of phorbol ester, an activator of protein kinase C, on the apoE expression in mouse thioglycollate-elicited peritoneal macrophages. Phorbol ester inhibits apoE expression in a specific, time- and dose-dependent manner. A 75% inhibition in the rate of apoE secretion, but not that of total protein, was observed following a 4.5 h incubation with 160 nM phorbol ester, although nearly full inhibition was obtained with 40 nM. The changes in apoE secretion were paralleled by similar changes in apoE synthesis, indicating synthesis as the primary site of action. The decreased rates of apoE synthesis are shown not to be due to increased apoE degradation. The profound inhibition of apoE synthesis was not accompanied by significant changes in apoE mRNA levels at any concentration of phorbol ester (up to 16 microM), or length of treatment (up to 24 h), suggesting a post-transcriptional locus of regulation of apoE expression. Although the early changes in apoE synthesis correlate with increased microsomal protein kinase C activity, the suppression of apoE expression persists even during conditions of nearly complete (> 95%) loss of protein kinase C activity, suggesting that the direct or indirect effect of protein kinase C on apoE expression is mediated by a stable phosphorylated protein, or that the observed effects are mediated through a protein kinase C species that is not readily downregulated by phorbol esters. The presented studies clearly demonstrate the potential importance of the translational regulation of apoE expression through the protein kinase C signal transduction pathway.


1993 ◽  
Vol 13 (3) ◽  
pp. 1471-1479
Author(s):  
A Krook ◽  
M J Rapoport ◽  
S Anderson ◽  
H Pross ◽  
Y C Zhou ◽  
...  

Both p21ras and protein kinase C (PKC) are believed to function downstream of plasma membrane-associated tyrosine kinases in cellular signal transduction pathways. However, it has remained controversial whether they function in the same pathway and, if so, what their relative position and functional relationship in such a pathway are. We investigated the possibilities that p21ras and PKC function either upstream or downstream of each other in a common linear pathway or that they function independently in colinear signal pathways. Either decreased expression of endogenous normal ras in fibroblasts transfected with an inducible antisense ras construct or overexpression of a mutant ras gene reduced the capacity of the phorbol ester tetradecanoyl phorbol acetate to trigger expression of the tetradecanoyl phorbol acetate-responsive and ras-dependent reporter gene osteopontin (OPN). PKC depletion decreased basal OPN mRNA levels, and the overexpression of ras restored OPN expression to the level of non-PKC-depleted cells. We propose a model in which ras and PKC function in distinct and interdependent signaling pathways.


1997 ◽  
Vol 324 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Benjamin L. J. WEBB ◽  
Mark A. LINDSAY ◽  
Peter J. BARNES ◽  
Mark A. GIEMBYCZ

The protein kinase C (PKC) isoenzymes expressed by bovine tracheal smooth muscle (BTSM) were identified at the protein and mRNA levels. Western immunoblot analyses reliably identified PKCα, PKCβI and PKCβII. In some experiments immunoreactive bands corresponding to PKCδ, PKCϵ and PKCθ were also labelled, whereas the γ, η and ζ isoforms of PKC were never detected. Reverse transcriptase PCR of RNA extracted from BTSM using oligonucleotide primer pairs designed to recognize unique sequences in the PKC genes for which protein was absent or not reproducibly identified by immunoblotting, amplified cDNA fragments that corresponded to the predicted sizes of PKCδ, PKCϵ and PKCζ, which was confirmed by Southern blotting. Anion-exchange chromatography of the soluble fraction of BTSM following homogenization in Ca2+-free buffer resolved two major peaks of activity. Using ϵ-peptide as the substrate, the first peak of activity was dependent upon Ca2+ and 4β-PDBu (PDBu = phorbol 12,13-dibutyrate), and represented a mixture of PKCs α, βI and βII. In contrast, the second peak of activity, which eluted at much higher ionic strength, also appeared to comprise a combination of conventional PKCs that were arbitrarily denoted PKCα′, PKCβI′ and PKCβII′. However, these novel enzymes were cofactor-independent and did not bind [3H]PDBu, but were equally sensitive to the PKC inhibitor GF 109203X compared with bona fide conventional PKCs, and migrated on SDS/polyacrylamide gels as 81 kDa polypeptides. Taken together, these data suggest that PKCs α′, βI′ and βII′ represent modified, but not proteolysed, forms of their respective native enzymes that retain antibody immunoreactivity and sensitivity to PKC inhibitors, but have lost their sensitivity to Ca2+ and PDBu when ϵ-peptide is used as the substrate.


2004 ◽  
Vol 96 (6) ◽  
pp. 2028-2033 ◽  
Author(s):  
A. Sundaresan ◽  
D. Risin ◽  
N. R. Pellis

In long-term space travel, the crew is exposed to microgravity and radiation that invoke potential hazards to the immune system. T cell activation is a critical step in the immune response. Receptor-mediated signaling is inhibited in both microgravity and modeled microgravity (MMG) as reflected by diminished DNA synthesis in peripheral blood lymphocytes and their locomotion through gelled type I collagen. Direct activation of protein kinase C (PKC) bypassing cell surface events using the phorbol ester PMA rescues MMG-inhibited lymphocyte activation and locomotion, whereas the calcium ionophore ionomycin had no rescue effect. Thus calcium-independent PKC isoforms may be affected in MMG-induced locomotion inhibition and rescue. Both calcium-dependent isoforms and calcium-independent PKC isoforms were investigated to assess their expression in lymphocytes in 1 g and MMG culture. Human lymphocytes were cultured and harvested at 24, 48, 72, and 96 h, and serial samples were assessed for locomotion by using type I collagen and expression of PKC isoforms. Expression of PKC-α, -δ, and -ϵ was assessed by RT-PCR, flow cytometry, and immunoblotting. Results indicated that PKC isoforms δ and ϵ were downregulated by >50% at the transcriptional and translational levels in MMG-cultured lymphocytes compared with 1- g controls. Events upstream of PKC, such as phosphorylation of phospholipase Cγ in MMG, revealed accumulation of inactive enzyme. Depressed calcium-independent PKC isoforms may be a consequence of an upstream lesion in the signal transduction pathway. The differential response among calcium-dependent and calcium-independent isoforms may actually result from MMG intrusion events earlier than PKC, but after ligand-receptor interaction.


Sign in / Sign up

Export Citation Format

Share Document