scholarly journals Prevention of Damage to Spent Nuclear Fuel during Handling Operations

2020 ◽  
pp. 62-71
Author(s):  
M. Sapon ◽  
O. Gorbachenko ◽  
S. Kondratyev ◽  
V. Krytskyy ◽  
V. Mayatsky ◽  
...  

According to regulatory requirements, when carrying out handling operations with spent nuclear fuel (SNF), prevention of damage to the spent fuel assemblies (SFA) and especially fuel elements shall be ensured. For this purpose, it is necessary to exclude the risk of SFA falling, SFA uncontrolled displacements, prevent mechanical influences on SFA, at which their damage is possible. Special requirements for handling equipment (in particular, cranes) to exclude these dangerous events, the requirements for equipment strength, resistance to external impacts, reliability, equipment design solutions, manufacturing quality are analyzed in this work. The requirements of Ukrainian and U.S. regulatory documents also are considered. The implementation of these requirements is considered on the example of handling equipment, in particular, spent nuclear fuel storage facilities. This issue is important in view of creation of new SNF storage facilities in Ukraine. These facilities include the storage facility (SFSF) for SNF from water moderated power reactors (WWER): a Сentralized SFSF for storing SNF of Rivne, Khmelnitsky and South-Ukraine Nuclear Power Plants (СSFSF), and SFSF for SNF from high-power channel reactors (RBMK): a dry type SFSF at Chornobyl nuclear power plant (ISF-2). After commissioning of these storage facilities, all spent nuclear fuel from Ukrainian nuclear power plants will be placed for long-term “dry” storage. The safety of handling operations with SNF during its preparation for long-term storage is an important factor.

2019 ◽  
pp. 82-87
Author(s):  
Ya. Kostiushko ◽  
O. Dudka ◽  
Yu. Kovbasenko ◽  
A. Shepitchak

The introduction of new fuel for nuclear power plants in Ukraine is related to obtaining a relevant license from the regulatory authority for nuclear and radiation safety of Ukraine. The same approach is used for spent nuclear fuel (SNF) management system. The dry spent fuel storage facility (DSFSF) is the first nuclear facility created for intermediate dry storage of SNF in Ukraine. According to the design based on dry ventilated container storage technology by Sierra Nuclear Corporation and Duke Engineering and Services, ventilated storage containers (VSC-VVER) filled with SNF of VVER-1000 are used, which are located on a special open concrete site. Containers VSC-VVER are modernized VSC-24 containers customized for hexagonal VVER-1000 spent fuel assemblies. The storage safety assessment methodology was created and improved directly during the licensing process. In addition, in accordance with the Energy Strategy of Ukraine up to 2035, one of the key task is the further diversification of nuclear fuel suppliers. Within the framework of the Executive Agreement between the Government of Ukraine and the U.S. Government, activities have been underway since 2000 on the introduction of Westinghouse fuel. The purpose of this project is to develop, supply and qualify alternative nuclear fuel compatible with fuel produced in Russia for Ukrainian NPPs. In addition, a supplementary approach to safety analysis report is being developed to justify feasibility of loading new fuel into the DSFSF containers. The stated results should demonstrate the fulfillment of design criteria under normal operating conditions, abnormal conditions and design-basis accidents of DSFSF components.  Thus, the paper highlights both the main problems of DSFSF licensing and obtaining permission for placing new fuel types in DSFSF.


2020 ◽  
Vol 18 (10) ◽  
pp. 1807-1816
Author(s):  
Claudir Jose Nodari ◽  
Pedro Luiz da Cruz Saladanha ◽  
Gladson Silva Fontes

10.6036/10156 ◽  
2021 ◽  
Vol 96 (4) ◽  
pp. 355-358
Author(s):  
Pablo Fernández Arias ◽  
DIEGO VERGARA RODRIGUEZ

Centralized Temporary Storage Facility (CTS) is an industrial facility designed to store spent fuel (SF) and high level radioactive waste (HLW) generated at Spanish nuclear power plants (NPP) in a single location. At the end of 2011, the Spanish Government approved the installation of the CTS in the municipality of Villar de Cañas in Cuenca. This approval was the outcome of a long process of technical studies and political decisions that were always surrounded by great social rejection. After years of confrontations between the different political levels, with hardly any progress in its construction, this infrastructure of national importance seems to have been definitively postponed. The present research analyzes the management strategy of SF and HLW in Spain, as well as the alternative strategies proposed, taking into account the current schedule foreseen for the closure of the Spanish NPPs. In view of the results obtained, it is difficult to affirm that the CTS will be available in 2028, with the possibility that its implementation may be delayed to 2032, or even that it may never happen, making it necessary to adopt an alternative strategy for the management of GC and ARAR in Spain. Among the different alternatives, the permanence of the current Individualized Temporary Stores (ITS) as a long-term storage strategy stands out, and even the possibility of building several distributed temporary storage facilities (DTS) in which to store the SF and HLW from several Spanish NPP. Keywords: nuclear waste, storage, nuclear power plants.


2021 ◽  
Vol 7 (1) ◽  
pp. 9-13
Author(s):  
David A. Hakobyan ◽  
Victor I. Slobodchuk

The problems of reprocessing and long-term storage of spent nuclear fuel (SNF) at nuclear power plants with RBMK reactors have not been fully resolved so far. For this reason, nuclear power plants are forced to search for new options for the disposal of spent fuel, which can provide at least temporary SNF storage. One of the possible solutions to this problem is to switch to compacted SNF storage in reactor spent fuel pools (SFPs). As the number of spent fuel assemblies (SFAs) in SFPs increases, a greater amount of heat is released. In addition, no less important is the fact that a place for emergency FA discharging should be provided in SFPs. The paper presents the results of a numerical simulation of the temperature conditions in SFPs both for compacted SNF storage and for emergency FA discharging. Several types of disturbances in normal SFP cooling mode are considered, including partial loss of cooling water and exposure of SFAs. The simulation was performed using the ANSYS CFX software tool. Estimates were made of the time for heating water to the boiling point, as well as the time for heating the cladding of the fuel elements to a temperature of 650 °С. The most critical conditions are observed in the emergency FA discharging compartment. The results obtained make it possible to estimate the time that the personnel have to restore normal cooling mode of the spent fuel pool until the maximum temperature for water and spent fuel assemblies is reached.


2019 ◽  
Vol 5 (3) ◽  
Author(s):  
You Shi ◽  
Dong Ning ◽  
Yi-zhong Yang

Boron carbide (B4C) particle-reinforced aluminum matrix composite is the key material for use as neutron absorber plate in fuel storage applications for Generation III advanced passive nuclear power plants in China. This material has once depended upon importing with various restrictions so that it has meaningful practical significance to realize the localized manufacturing for this material in China. More importantly, since it is the first time for this material to be used in domestic plant, particular care should be taken to assure the formal supplied products exhibit high stabilized and reliable service in domestic nuclear engineering. This paper initiates and proposes a principle design framework from technical view in qualification requirements for this material so as to guide the practical engineering application. Aiming at neutron absorber materials supplied under practical manufacturing condition in engineering delivery, the qualification requirements define B4C content, matrix chemistry, 10B isotope, bulk density, 10B areal density, mechanical property, and microstructure as key criteria for material performance. The uniformity assessment as to different locations of this material is also required from at least three lots of material. Only qualified material meeting all of the qualification requirements should proceed to be verified by lifetime testing such as irradiation, corrosion, and thermal aging testing. Systematic and comprehensive performance assessments and verification for process stabilization could be achieved through the above qualification. The long-term service for this neutron absorber material in reliable and safe way could be convincingly expected in spent fuel storage application in China.


Author(s):  
Krista Nicholson ◽  
John McDonald ◽  
Shona Draper ◽  
Brian M. Ikeda ◽  
Igor Pioro

Currently in Canada, spent fuel produced from Nuclear Power Plants (NPPs) is in the interim storage all across the country. It is Canada’s long-term strategy to have a national geologic repository for the disposal of spent nuclear fuel for CANada Deuterium Uranium (CANDU) reactors. The initial problem is to identify a means to centralize Canada’s spent nuclear fuel. The objective of this paper is to present a solution for the transportation issues that surround centralizing the waste. This paper reviews three major components of managing and the transporting of high-level nuclear waste: 1) site selection, 2) containment and 3) the proposed transportation method. The site has been selected based upon several factors including proximity to railways and highways. These factors play an important role in the site-selection process since the location must be accessible and ideally to be far from communities. For the containment of the spent fuel during transportation, a copper-shell container with a steel structural infrastructure was selected based on good thermal, structural, and corrosion resistance properties has been designed. Rail has been selected as the method of transporting the container due to both the potential to accommodate several containers at once and the extensive railway system in Canada.


2014 ◽  
Vol 56 (5) ◽  
pp. 501-514 ◽  
Author(s):  
N. D. Goletskii ◽  
B. Ya. Zilberman ◽  
Yu. S. Fedorov ◽  
A. S. Kudinov ◽  
A. A. Timoshuk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document