scholarly journals Temperature and shrinkage cracking in reinforced concrete walls

2021 ◽  
Author(s):  
Dylan James Matin

Concrete cracking due to restrained thermal and shrinkage strain is a widespread problem that could happen to any structural element including base restrained walls. This type of crack usually occurs in structures with rigidly interconnected parts cast after their adjacent parts are hardened. As concrete undergoes volumetric deformations right after casting, the developing strains due to temperature drop and moisture loss get restrained by neighboring parts which causes stress development and could lead to formation of cracks. Cracking could reduce the structure’s integrity and serviceability, cause deterioration which could also lead to esthetical concerns. Therefore, structures should be designed to limit cracks to an acceptable level depending on the functionality requirements of the structure and its exposure conditions. Although it has been proven that it is almost impossible to completely eliminate cracking, providing an adequate amount of appropriately positioned reinforcement can reduce the width of cracks significantly. This study aims to investigate the behavior of base restrained reinforced concrete (RC) walls under volumetric changes due to thermal and shrinkage strains and providing a procedure to determine the amount of reinforcement needed to control the width of cracks. The ABAQUS finite element (FE) program is used to simulate the structures used in this study. The models are verified by comparing the results with previous experimental studies. Based on the performed parametric study, a procedure is suggested to determine the amount of steel reinforcement required to satisfy the cracking limitations based on major parameters that affect the crack width.

2021 ◽  
Author(s):  
Dylan James Matin

Concrete cracking due to restrained thermal and shrinkage strain is a widespread problem that could happen to any structural element including base restrained walls. This type of crack usually occurs in structures with rigidly interconnected parts cast after their adjacent parts are hardened. As concrete undergoes volumetric deformations right after casting, the developing strains due to temperature drop and moisture loss get restrained by neighboring parts which causes stress development and could lead to formation of cracks. Cracking could reduce the structure’s integrity and serviceability, cause deterioration which could also lead to esthetical concerns. Therefore, structures should be designed to limit cracks to an acceptable level depending on the functionality requirements of the structure and its exposure conditions. Although it has been proven that it is almost impossible to completely eliminate cracking, providing an adequate amount of appropriately positioned reinforcement can reduce the width of cracks significantly. This study aims to investigate the behavior of base restrained reinforced concrete (RC) walls under volumetric changes due to thermal and shrinkage strains and providing a procedure to determine the amount of reinforcement needed to control the width of cracks. The ABAQUS finite element (FE) program is used to simulate the structures used in this study. The models are verified by comparing the results with previous experimental studies. Based on the performed parametric study, a procedure is suggested to determine the amount of steel reinforcement required to satisfy the cracking limitations based on major parameters that affect the crack width.


Author(s):  
Alex Shegay ◽  
Farhad Dashti ◽  
Lucas Hogan ◽  
Yiqiu Lu ◽  
Arsalan Niroomandi ◽  
...  

A wide range of reinforced concrete (RC) wall performance was observed following the 2010/2011 Canterbury earthquakes, with most walls performing as expected, but some exhibiting undesirable and unexpected damage and failure characteristics. A comprehensive research programme, funded by the Building Performance Branch of the New Zealand Ministry of Business, Innovation and Employment, and involving both numerical and experimental studies, was developed to investigate the unexpected damage observed in the earthquakes and provide recommendations for the design and assessment procedures for RC walls. In particular, the studies focused on the performance of lightly reinforced walls; precast walls and connections; ductile walls; walls subjected to bi-directional loading; and walls prone to out-of-plane instability. This paper summarises each research programme and provides practical recommendations for the design and assessment of RC walls based on key findings, including recommended changes to NZS 3101 and the NZ Seismic Assessment Guidelines.


Author(s):  
Prof. Subodh Dhoke

During earthquakes, a large number of buildings are destroyed due to the cause of lateral forces and increased load capacity in the structural element, and this is caused by winds, earthquakes and uneven settlement of cargo. The least damage and well-being a healthy level of construction is a necessary requirement for tall buildings. To reduce the impact of damage on all high structures, it may consist of basic insulation techniques and sliding walls, and so on. Buildings are used to increase design performance and limit damage to landslide walls. On tall buildings to prevent earthquake loads, reinforced concrete walls are used as supporting elements. Reinforced concrete structures are mainly implemented in engineering practice in different situations and different applications. Many researchers turn to the effectiveness of sliding walls with boundary conditions based on different types of reinforcement alignment. This document consists of modeling different models for the shear wall housing and the hood system.


1996 ◽  
Vol 30 (11) ◽  
pp. 654-663 ◽  
Author(s):  
V. N. Zhukov ◽  
S. V. Ternavskii ◽  
Yu. O. Zal'tsman ◽  
A. A. Lyubomirov

Sign in / Sign up

Export Citation Format

Share Document