scholarly journals Proton exchange membrane (PEM) fuel cell parametric study via mathematical modeling and numerical simulation.

2021 ◽  
Author(s):  
Rihab Jaralla

In the proton exchange membrane (PEM) fuel cell study, numerical analysis of complex and coupled multi-disciplinary processes involving the subjects of fluid dynamics, heat transfer, mass transport, and electrochemistry has been attempted over the past few decades. However, many resulting models are, in spite of fancier functionalities such as three-dimensionality, too complex to implement on account of the digital hardware requirement as well as computation time consumption. On the other hand, three-dimensional analytical models reported in literature look much simple, but they are embedded by a number of fairly unrealistic assumptions and, hence, lead to significantly weakened usability. In this thesis, a set of detailed two-dimensional non-isothermal computational models for PEM fuel cells in x-y and y-z planes are developed, which aims at the equivalency with the 3D PEM fuel cell model and, moreover, gains more insights with significantly reduced computational cost. The complete model consisting of the equations of continuity, momentum, energy, species concentrations, and electric potentials in different regions of a PEM fuel cell are numerically solved using the finite element method implemented into a commercial CFD (COMSOL) code. A comprehensive comparison with the experimental data has been performed to validate the 2D models developed in this study. On the basis of simulations of various flow and transport phenomena in an operational PEMFC, a systematic parametric study is conducted using the present developed PEM fuel cell models. A number of operating and design parameters are examined, including the operating pressure, ambient temperature, relative humidity, the porosity of the gas diffusion layer (GDL), the effective porosity of catalyst layer (CL), the porosity of membrane (M), the proton conductivity and the air inlet velocity at cathode side. The obtained results of this study revelaed that the membrane porosity, and air inlet velocity have considerable effects on the water content in the membrane, thus it is essential to select the proper values of these parameters to improve water management in the cell and avoid dehydration the membrane or flooding the electrode. Also, it is found that increasing air velocity at the inlet of the cathode gas channel has a significant effect on the temperature distribution in PEM fuel cell, as the temperature a noticeably dropped with higher inlet air velocity. The numerically results also found that with higher porosities of gas diffusion layers (GDLs) and catalyst layers (CLs), the performance of PEM fuel cell improved. In addition, it found that a higher performance can be achieved when fuel cell operated with reasonably higher operating temperature, operating pressure, proton conductivity and ensuring a full hydration of the reactants. The outcome of this study demonstrates that the present developed PEM fuel cell models can serve as a useful tool for understanding of transport and electrochemical phenomena in PEM fuel cell as well as for optimization of cell design and operating conditions.

2021 ◽  
Author(s):  
Rihab Jaralla

In the proton exchange membrane (PEM) fuel cell study, numerical analysis of complex and coupled multi-disciplinary processes involving the subjects of fluid dynamics, heat transfer, mass transport, and electrochemistry has been attempted over the past few decades. However, many resulting models are, in spite of fancier functionalities such as three-dimensionality, too complex to implement on account of the digital hardware requirement as well as computation time consumption. On the other hand, three-dimensional analytical models reported in literature look much simple, but they are embedded by a number of fairly unrealistic assumptions and, hence, lead to significantly weakened usability. In this thesis, a set of detailed two-dimensional non-isothermal computational models for PEM fuel cells in x-y and y-z planes are developed, which aims at the equivalency with the 3D PEM fuel cell model and, moreover, gains more insights with significantly reduced computational cost. The complete model consisting of the equations of continuity, momentum, energy, species concentrations, and electric potentials in different regions of a PEM fuel cell are numerically solved using the finite element method implemented into a commercial CFD (COMSOL) code. A comprehensive comparison with the experimental data has been performed to validate the 2D models developed in this study. On the basis of simulations of various flow and transport phenomena in an operational PEMFC, a systematic parametric study is conducted using the present developed PEM fuel cell models. A number of operating and design parameters are examined, including the operating pressure, ambient temperature, relative humidity, the porosity of the gas diffusion layer (GDL), the effective porosity of catalyst layer (CL), the porosity of membrane (M), the proton conductivity and the air inlet velocity at cathode side. The obtained results of this study revelaed that the membrane porosity, and air inlet velocity have considerable effects on the water content in the membrane, thus it is essential to select the proper values of these parameters to improve water management in the cell and avoid dehydration the membrane or flooding the electrode. Also, it is found that increasing air velocity at the inlet of the cathode gas channel has a significant effect on the temperature distribution in PEM fuel cell, as the temperature a noticeably dropped with higher inlet air velocity. The numerically results also found that with higher porosities of gas diffusion layers (GDLs) and catalyst layers (CLs), the performance of PEM fuel cell improved. In addition, it found that a higher performance can be achieved when fuel cell operated with reasonably higher operating temperature, operating pressure, proton conductivity and ensuring a full hydration of the reactants. The outcome of this study demonstrates that the present developed PEM fuel cell models can serve as a useful tool for understanding of transport and electrochemical phenomena in PEM fuel cell as well as for optimization of cell design and operating conditions.


Author(s):  
Zhongying Shi ◽  
Xia Wang

The gas diffusion layer (GDL) in a proton exchange membrane (PEM) fuel cell has a porous structure with anisotropic and non-homogenous properties. The objective of this research is to develop a PEM fuel cell model where transport phenomena in the GDL are simulated based on GDL’s pore structure. The GDL pore structure was obtained by using a scanning electron microscope (SEM). GDL’s cross-section view instead of surface view was scanned under the SEM. The SEM image was then processed using an image processing tool to obtain a two dimensional computational domain. This pore structure model was then coupled with an electrochemical model to predict the overall fuel cell performance. The transport phenomena in the GDL were simulated by solving the Navier-Stokes equation directly in the GDL pore structure. By comparing with the testing data, the fuel cell model predicted a reasonable fuel cell polarization curve. The pore structure model was further used to calculate the GDL permeability. The numerically predicted permeability was close to the value published in the literature. A future application of the current pore structure model is to predict GDL thermal and electric related properties.


Author(s):  
Z. Shi ◽  
X. Wang

The gas diffusion layer (GDL) in a proton exchange membrane (PEM) fuel cell has a porous structure with anisotropic and non-homogenous properties. The objective of this research is to develop a PEM fuel cell model where transport phenomena in the GDL are simulated based on GDL’s pore structure. The GDL pore structure was obtained by using a scanning electron microscope (SEM). GDL’s cross-section view instead of surface view was scanned under the SEM. The SEM image was then processed using an image processing tool to obtain a two-dimensional computational domain. This pore structure model was then coupled with an electrochemical model to predict the overall fuel cell performance. The transport phenomena in the GDL were simulated by solving the Navier-Stokes equation directly in the GDL pore structure. By comparing with the testing data, the fuel cell model predicted a reasonable fuel cell polarization curve. The pore structure model was further used to calculate the GDL permeability. The numerically predicted permeability was close to the value published in the literature. A future application of the current pore structure model is to predict GDL thermal and electric related properties.


2020 ◽  
Author(s):  
Peng Cheng ◽  
Chasen Tongsh ◽  
Jinqiao Liang ◽  
Zhi Liu ◽  
Qing Du ◽  
...  

Abstract In this study, an experimental study has been performed to investigate the effect of in-plane distribution of Pt and Nafion in membrane electrode assembly (MEA) on proton exchange membrane (PEM) fuel cell. Two types of MEAs, such as the gradient and uniform distributions of Pt catalyst and Nafion, are compared under various operating conditions including cathode flow rate, MEA preparation method, Pt loading and relative humidity (RH). The catalyst ink is sprayed onto Nafion membrane or gas diffusion layer (GDL) through a pneumatic automatic spraying device manufactured by ourselves. MEA is prepared by hot pressing. The results show that as flow rate decreases, the MEA with gradient distribution will show a higher voltage at a high current density for catalyst coated membrane (CCM) method. For CCM method, gradient distribution can optimize cell performance under low cathode flow rate, but the optimization effect is weakened when flow rate is too low. Compared with CCM method, the gas diffusion electrode (GDE) method makes the difference value of Ohmic resistance between gradient and uniform distribution very larger, resulting in poor performance improvement. For GDE method, gradient distribution shows no optimization for cell performance under different Pt loadings and RH, but a smaller average Pt loading and fully-humidified reactants can reduce the performance distinction between uniform and gradient distribution. The gradient design of Pt and Nafion along the in-plane direction is a promising strategy to improve the performance of PEM fuel cell. Reasonably controlling the gradient distribution of Pt in the plane direction of cathode can reduce the amount of Pt catalysts and improve efficiency.


Author(s):  
Linfa Peng ◽  
Diankai Qiu ◽  
Peiyun Yi ◽  
Xinmin Lai

Contact pressure distribution between bipolar plate (BPP) and gas diffusion layer (GDL) has significant impact on performance and life time of proton exchange membrane (PEM) fuel cell. Most current studies for contact pressure prediction are based on finite-element analysis (FEA), requiring huge computation for the whole fuel cell assembly. Comparatively speaking, the more generalized and well-developed analytical methods are deficient in this field. The objective of this study is to propose a full-scale continuous equivalent model to predict GDL contact pressure effectively in the PEM fuel cell. Using the model, the nonuniform pressure distribution resulted from dimensional errors of metallic BPP and GDL could be obtained. First, a parameterized theoretical model of BPP/GDL assembly is established based on equivalent stiffness analysis of components, and definition methods of dimensional errors are proposed according to actual measurements and Monte Carlo simulation (MCS). Then, experiments are carried out to obtain the actual GDL contact pressure and the model results show good agreement with experimental results. At last, effects of dimensional errors are investigated. Acceptable assembly pressure for a given fuel cell is suggested based on the model. This model is helpful to understand the effect of the dimensional errors, and it also could be adopted to guide the manufacturing of BPP, GDL, and the assembling of PEM fuel cell.


2021 ◽  
Author(s):  
Rihab. Jaralla

A novel mathematical model for an entire proton exchange membrane fuel cell (PEMFC) is developed with its focus placed on the modeling and assessment of thermodiffusion effects that have been neglected in previous studies. Instead of treating catalyst layers as interfaces of nil thickness, the model presented here features a finite thickness employed for catalyst layers, allowing for a more realistic description of electrochemical reaction kinetics arising in the operational PEMFC. To account for the membrane swelling effect, the membrane water balance is modeled by coupling the diffusion of water, the pressure variation, and the electro-osmotic drag. The complete model consisting of the equations of continuity, momentum, energy, species concentrations, and electric potentials in different regions of a PEMFC are numerically solved using the finite element method implemented into a commercial CFD (Comsol 3.4) code. Various flow and transport phenomena in an operational PEMFC are simulated using the newly developed model. The resulting numerical simulations demonstrate that the thermodiffusion has a noticeable impact on the mass transfer for the oxygen. It is also revealed through a systematic parametric study that, as the porosity of gas diffusion layers and catalyst layers increase, the current density of an operational PEMFC may increase. Also, it is found that a PEM fuel cell can perform better with reasonable high operating pressure and temperature, as well as a supply of fully humidified gaseous reactants.


Author(s):  
Jingru Benner ◽  
Mehdi Mortazavi ◽  
Anthony D. Santamaria

Liquid water management is critical for Proton Exchange Membrane (PEM) fuel cell operation, as excessive humidity can lead to flooding and cell performance degradation. Water is produced in the cathode catalyst layer during the electrochemical reaction. If reactant gas streams become saturated, liquid water forms and must travel through anode and cathode Gas Diffusion Layers (GDLs) to reach flow channels for removal. Understanding the dynamic behavior of the droplet is critical to improve water removal strategies for PEM fuel cells. In this study a 3D, transient, two-phase model based on the Volume of Fluid (VOF) method was developed to study a single droplet in the gas channel. The formation, growth, and breakup of the droplet is tracked numerically and analyzed. The pressure drop across the droplet is monitored over time and compared with theoretical analysis. The droplet size and shape change over time for two different pore sizes are compared. The impact of various gases including air, helium, and hydrogen on droplet dynamics is presented. The viscous force and pressure force on the droplet and the drag coefficient are calculated.


Author(s):  
Kui Jiao ◽  
Biao Zhou

Liquid water transport inside proton exchange membrane (PEM) fuel cells is one of the key challenges for water management in a PEM fuel cell. Investigation of the air-water flow patterns inside fuel cell gas flow channels with gas diffusion layer (GDL) would provide valuable information that could be used in fuel cell design and optimization. This paper presents an accelerated numerical investigation of air-water flow across a GDL with a serpentine channel on PEM fuel cell cathode by use of a commercial computational fluid dynamics software package FLUENT. Detailed flow patterns with air-water across the porous media were investigated and discussed.


2015 ◽  
Vol 20 (2) ◽  
pp. 319-328
Author(s):  
I. Khazaee

Abstract In this study, the performance of a proton exchange membrane fuel cell in mobile applications is investigated analytically. At present the main use and advantages of fuel cells impact particularly strongly on mobile applications such as vehicles, mobile computers and mobile telephones. Some external parameters such as the cell temperature (Tcell ) , operating pressure of gases (P) and air stoichiometry (λair ) affect the performance and voltage losses in the PEM fuel cell. Because of the existence of many theoretical, empirical and semi-empirical models of the PEM fuel cell, it is necessary to compare the accuracy of these models. But theoretical models that are obtained from thermodynamic and electrochemical approach, are very exact but complex, so it would be easier to use the empirical and smi-empirical models in order to forecast the fuel cell system performance in many applications such as mobile applications. The main purpose of this study is to obtain the semi-empirical relation of a PEM fuel cell with the least voltage losses. Also, the results are compared with the existing experimental results in the literature and a good agreement is seen.


2021 ◽  
Author(s):  
Rihab. Jaralla

A novel mathematical model for an entire proton exchange membrane fuel cell (PEMFC) is developed with its focus placed on the modeling and assessment of thermodiffusion effects that have been neglected in previous studies. Instead of treating catalyst layers as interfaces of nil thickness, the model presented here features a finite thickness employed for catalyst layers, allowing for a more realistic description of electrochemical reaction kinetics arising in the operational PEMFC. To account for the membrane swelling effect, the membrane water balance is modeled by coupling the diffusion of water, the pressure variation, and the electro-osmotic drag. The complete model consisting of the equations of continuity, momentum, energy, species concentrations, and electric potentials in different regions of a PEMFC are numerically solved using the finite element method implemented into a commercial CFD (Comsol 3.4) code. Various flow and transport phenomena in an operational PEMFC are simulated using the newly developed model. The resulting numerical simulations demonstrate that the thermodiffusion has a noticeable impact on the mass transfer for the oxygen. It is also revealed through a systematic parametric study that, as the porosity of gas diffusion layers and catalyst layers increase, the current density of an operational PEMFC may increase. Also, it is found that a PEM fuel cell can perform better with reasonable high operating pressure and temperature, as well as a supply of fully humidified gaseous reactants.


Sign in / Sign up

Export Citation Format

Share Document