scholarly journals A validated finite element study of stress shielding in a novel hybrid knee implant

Author(s):  
Ziauddin Mahboob

This study (1) proposes a hybrid knee implant design to improve stress transfer to bone tissue in the distal femur by modifying a conventional femoral implant to include a layer of carbon fibre reinforced polyamide 12, and (2) develops a finite element model of the prosthetic knee joint, validated by comparison with a parallel experimental study. The Duracon knee system was used in the experimental study, and its geometry was modelled using CAD software. Synthetic bone replicas were used instead of cadaveric specimens in the experiments. The strains generated on the femur and implant surfaces were measured under axial compressive loads of 2000 N and 3000 N. A mesh of 105795 nodes was needed to obtain sufficient accuracy in the finite element model, which reproduced the experimental reading within 10-23% in six of the eight test locations. The model of the proposed hybrid design showed considerable improvements in stress transfer to the bone tissue at three test flexion angles of 0°, 20°, and 60°.

2021 ◽  
Author(s):  
Ziauddin Mahboob

This study (1) proposes a hybrid knee implant design to improve stress transfer to bone tissue in the distal femur by modifying a conventional femoral implant to include a layer of carbon fibre reinforced polyamide 12, and (2) develops a finite element model of the prosthetic knee joint, validated by comparison with a parallel experimental study. The Duracon knee system was used in the experimental study, and its geometry was modelled using CAD software. Synthetic bone replicas were used instead of cadaveric specimens in the experiments. The strains generated on the femur and implant surfaces were measured under axial compressive loads of 2000 N and 3000 N. A mesh of 105795 nodes was needed to obtain sufficient accuracy in the finite element model, which reproduced the experimental reading within 10-23% in six of the eight test locations. The model of the proposed hybrid design showed considerable improvements in stress transfer to the bone tissue at three test flexion angles of 0°, 20°, and 60°.


2018 ◽  
Vol 18 (08) ◽  
pp. 1840024
Author(s):  
MONAN WANG ◽  
RONGPENG LI ◽  
JUNTONG JING

Living body or corpse could be replaced with the virtual human tissue model for biomechanical experimental study, which effectively avoids the non-reusability, great social controversy, huge costs and difficulty in extracting parameters, and finally, the accurate analysis results are obtained. Unlike the previous lower limb models, the finite element models of hip and thigh were established based on the concept of muscle group in this paper. The cortical bones of hip bone and femur were set as *MAT_PIECEWISE_LINEAR_ PLASTICITY. The material of cancellous bone was set as *MAT_ELASTIC_PLASTIC_ WITH_DAMAGE_FAILURE. The material of articular cartilage was set as *MAT_ISOTROPIC_ELASTIC. The materials of muscle and fat were set as *MAT_VISCOELASTIC. The accuracy of the finite element model was verified by dynamic three-point bending experiment of the thighs. Mechanical simulation was carried out to the stump-prosthetic socket and the comfort of socks by the established model. The simulation results were all between the upper and lower bounds of the experimental results in the dynamic three-point bending experiment of the thighs where the loads were separately applied to one-third of the distal end of thighs and the middle part of thighs. The simulation results of the stump-prosthetic socket example show that the optimal elastic modulus of silicone pad is 2.5[Formula: see text]MPa. Simulation results of socks comfort show that the distribution of stress and deformation of the anterior and posterior thighs is different when the human lower limbs are in stockings. The established simulation model meets the accuracy requirement and can replace the living body or corpse to carry out biomechanical experimental study. The finite element simulation results converge, and the time to complete a finite element calculation is less than or equal to 10[Formula: see text]min.


1995 ◽  
Vol 12 (4) ◽  
pp. 679-688 ◽  
Author(s):  
F. A. BANDAK ◽  
M. J. VANDER VORST ◽  
L. M. STUHMILLER ◽  
P. F. MLAKAR ◽  
W. E. CHILTON ◽  
...  

2010 ◽  
Vol 132 (8) ◽  
Author(s):  
D. Carnelli ◽  
D. Gastaldi ◽  
V. Sassi ◽  
R. Contro ◽  
C. Ortiz ◽  
...  

A finite element model was developed for numerical simulations of nanoindentation tests on cortical bone. The model allows for anisotropic elastic and post-yield behavior of the tissue. The material model for the post-yield behavior was obtained through a suitable linear transformation of the stress tensor components to define the properties of the real anisotropic material in terms of a fictitious isotropic solid. A tension-compression yield stress mismatch and a direction-dependent yield stress are allowed for. The constitutive parameters are determined on the basis of literature experimental data. Indentation experiments along the axial (the longitudinal direction of long bones) and transverse directions have been simulated with the purpose to calculate the indentation moduli and the tissue hardness in both the indentation directions. The results have shown that the transverse to axial mismatch of indentation moduli was correctly simulated regardless of the constitutive parameters used to describe the post-yield behavior. The axial to transverse hardness mismatch observed in experimental studies (see, for example, Rho et al. [1999, “Elastic Properties of Microstructural Components of Human Bone Tissue as Measured by Nanoindentation,” J. Biomed. Mater. Res., 45, pp. 48–54] for results on human tibial cortical bone) can be correctly simulated through an anisotropic yield constitutive model. Furthermore, previous experimental results have shown that cortical bone tissue subject to nanoindentation does not exhibit piling-up. The numerical model presented in this paper shows that the probe tip-tissue friction and the post-yield deformation modes play a relevant role in this respect; in particular, a small dilatation angle, ruling the volumetric inelastic strain, is required to approach the experimental findings.


2020 ◽  
Vol 10 (17) ◽  
pp. 5973
Author(s):  
Paul Didier ◽  
Boris Piotrowski ◽  
Gael Le Coz ◽  
David Joseph ◽  
Pierre Bravetti ◽  
...  

The present work proposes a parametric finite element model of the general case of a single loaded dental implant. The objective is to estimate and quantify the main effects of several parameters on stress distribution and load transfer between a loaded dental implant and its surrounding bone. The interactions between them are particularly investigated. Seven parameters (implant design and material) were considered as input variables to build the parametric finite element model: the implant diameter, length, taper and angle of inclination, Young’s modulus, the thickness of the cortical bone and Young’s modulus of the cancellous bone. All parameter combinations were tested with a full factorial design for a total of 512 models. Two biomechanical responses were identified to highlight the main effects of the full factorial design and first-order interaction between parameters: peri-implant bone stress and load transfer between bones and implants. The description of the two responses using the identified coefficients then makes it possible to optimize the implant configuration in a case study with type IV. The influence of the seven considered parameters was quantified, and objective information was given to support surgeon choices for implant design and placement. The implant diameter and Young’s modulus and the cortical thickness were the most influential parameters on the two responses. The importance of a low Young’s modulus alloy was highlighted to reduce the stress shielding between implants and the surrounding bone. This method allows obtaining optimized configurations for several case studies with a custom-made design implant.


2013 ◽  
Vol 330 ◽  
pp. 872-877
Author(s):  
Yi Qiang Xiang ◽  
Li Si Liu ◽  
Shao Jun Li

Based on the results of experiment, this paper discusses about the updating and validation of accurate finite element model for damage identification of the steel-concrete composite box girder bridge. Taking a 5 meters long steel-concrete composite box girder bridge as the research object and the finite element model is established. By means of scale model test the updating of the accurate finite element model has been completed and validation is confirmed.


Author(s):  
Amirhesam Amerinatanzi ◽  
Narges Shayesteh Moghaddam ◽  
Hamdy Ibrahim ◽  
Mohammad Elahinia

Additive manufacturing (i.e. 3D printing) has only recently be shown as a well-established technology to create complex shapes and porous structures from different biocompatible metal powder such as titanium, nitinol, and stainless steel alloys. This allows for manufacturing bone fixation hardware with patient-specific geometry and properties (e.g. density and mechanical properties) directly from CAD files. Superelastic NiTi is one of the most biocompatible alloys with high shock absorption and biomimetic hysteresis behavior. More importantly, NiTi has the lowest stiffness (36–68 GPa) among all biocompatible alloys [1]. The stiffness of NiTi can further be reduced, to the level of the cortical bone (10–31.2 GPa), by introducing engineered porosity using additive manufacturing [2–4]. The low level of fixation stiffness allows for bone to receive a stress profile close to that of healthy bone during the healing period. This enhances the bone remodeling process (Wolf’s Law) which primarily driven by the pattern of stress. Also, this match in the stiffness of bone and fixation mitigates the problem of stress shielding and detrimental stress concentrations. Stress shielding is a known problem for the currently in-use Ti-6Al-4V fixation hardware. The high stiffness of Ti-6Al-4V (112 GPa) compared to bone results in the absence of mechanical loading on the adjacent bone that causes loss of bone mass and density and subsequently bone/implant failure. We have proposed additively manufactured porous NiTi fixation hardware with a patient-specific stiffness to be used for the mandibular reconstructive surgery (MRS). In MRS, the use of metallic fixation hardware and double barrel fibula graft is the standard methodology to restore the mandible functionality and aesthetic. A validated finite element model was developed from a dried cadaveric mandible using CT scan data. The model simulated a patient’s mandible after mandibular reconstructive surgery to compare the performance of the conventional Ti-6Al-4V fixation hardware with the proposed one (porous superelastic NiTi fixation plates). An optimized level of porosity was determined to match the NiTi equivalent stiffness to that of a resected bone, then it was imposed to the simulated fixation plates. Moreover, the material property of superelastic NiTi was simulated by using a validated customized code. The code was calibrated by using DSC analysis and mechanical tests on several prepared bulk samples of Ni-rich NiTi. The model was run under common activities such as chewing by considering different levels of the applied fastening torques on screws. The results show a higher level of stress distribution on mandible cortical bone in the case of using NiTi fixation plates. Based on wolf’s law it can lead to a lower level of stress shielding on the grafted bone and over time bone can remodel itself. Moreover, the results suggest an optimum fastening torque for fastening the screws for the superelastic fixations causes more normal distribution of stress on the bone similar to that for the healthy mandible. Finally, we successfully fabricated the stiffness-matched porous NiTi fixation plates using selective laser melting technique, and they were mounted on the dried cadaveric mandible used to create the finite element model.


Sign in / Sign up

Export Citation Format

Share Document