scholarly journals Predictive modeling of surface finish in fine grinding

Author(s):  
Yi Yang

Predictive modeling of surface finish in fine grinding

2021 ◽  
Author(s):  
Yi Yang

Predictive modeling of surface finish in fine grinding


1975 ◽  
Vol 97 (3) ◽  
pp. 1119-1125 ◽  
Author(s):  
G. K. Lal ◽  
M. C. Shaw

The scratches produced by single abrasive grains in overcut fly milling show that the transverse shape of a grain is closely approximated by an arc of a circle. This radius of curvature is found to be independent of grain type and grinding conditions but varies with the grain size. The equation for undeformed chip thickness for surface grinding is rederived in terms of this radius. The important role that the transverse curvature of the grain plays relative to surface finish is also discussed.


Author(s):  
C. W. Price ◽  
E. F. Lindsey ◽  
R. M. Franks ◽  
M. A. Lane

Diamond-point turning is an efficient technique for machining low-density polystyrene foam, and the surface finish can be substantially improved by grinding. However, both diamond-point turning and grinding tend to tear and fracture cell walls and leave asperities formed by agglomerations of fragmented cell walls. Vibratoming is proving to be an excellent technique to form planar surfaces in polystyrene, and the machining characteristics of vibratoming and diamond-point turning are compared.Our work has demonstrated that proper evaluation of surface structures in low density polystyrene foam requires stereoscopic examinations; tilts of + and − 3 1/2 degrees were used for the stereo pairs. Coating does not seriously distort low-density polystyrene foam. Therefore, the specimens were gold-palladium coated and examined in a Hitachi S-800 FESEM at 5 kV.


2000 ◽  
Vol 9 (3) ◽  
pp. 148-155 ◽  
Author(s):  
Han-Kuang Tan ◽  
Andrew Woo ◽  
Silvia Kim ◽  
Michael Lamoureux ◽  
Michael Grace

2011 ◽  
Vol 2 (3) ◽  
pp. 68-70 ◽  
Author(s):  
Kanase Sandip S ◽  
◽  
Jadhav Vishvas S

Sign in / Sign up

Export Citation Format

Share Document