scholarly journals A prototype anti-scatter detector for megavoltage X-ray imaging

2021 ◽  
Author(s):  
Manmeet Pal Singh

In this work, a prototype anti-scatter detector based on Cherenkov radiation is developed by using glass rods. Scattering lends deleterious effects to the megavoltage x-ray portal imaging and anti-scatter detector can effectively reduce these effects. A 10 cm long glass rod with 1 mm in diameter is used as a Cherenkov detector prototype and it is studied for its response to x-ray scattering from, e.g., machine head and patient. It is subjected to 6 MV x-ray beam generated by linear accelerator (LINAC) with different field sizes (from 3 X 3 to 20 X 20 cm2) at different air gaps such as 10, 30 and 46 cm. The Cherenkov signal created by the detector is transmitted through optical fiber to photomultiplier tube (PMT) and measured by electrometer. The patient scattering is studied by placing a solid water phantom at isocenter. The response of single pixel Cherenkov detector is compared with the conventional ionization chamber detector. It has been observed that glass rod based Cherenkov detector is less sensitive to scatter radiation than ion-chamber for air gap of 10 cm. The Cherenkov signal created by glass rod is quite weak for larger air gaps and the uncertainties are quite high. Moreover, the coupling between Cherenkov detector and optical fiber is quite crucial for transmitting the Cherenkov signal from glass rod into optical fiber.

2021 ◽  
Author(s):  
Manmeet Pal Singh

In this work, a prototype anti-scatter detector based on Cherenkov radiation is developed by using glass rods. Scattering lends deleterious effects to the megavoltage x-ray portal imaging and anti-scatter detector can effectively reduce these effects. A 10 cm long glass rod with 1 mm in diameter is used as a Cherenkov detector prototype and it is studied for its response to x-ray scattering from, e.g., machine head and patient. It is subjected to 6 MV x-ray beam generated by linear accelerator (LINAC) with different field sizes (from 3 X 3 to 20 X 20 cm2) at different air gaps such as 10, 30 and 46 cm. The Cherenkov signal created by the detector is transmitted through optical fiber to photomultiplier tube (PMT) and measured by electrometer. The patient scattering is studied by placing a solid water phantom at isocenter. The response of single pixel Cherenkov detector is compared with the conventional ionization chamber detector. It has been observed that glass rod based Cherenkov detector is less sensitive to scatter radiation than ion-chamber for air gap of 10 cm. The Cherenkov signal created by glass rod is quite weak for larger air gaps and the uncertainties are quite high. Moreover, the coupling between Cherenkov detector and optical fiber is quite crucial for transmitting the Cherenkov signal from glass rod into optical fiber.


2004 ◽  
Vol 37 (5) ◽  
pp. 757-765 ◽  
Author(s):  
L. E. Levine ◽  
G. G. Long

A new transmission X-ray imaging technique using ultra-small-angle X-ray scattering (USAXS) as a contrast mechanism is described. USAXS imaging can sometimes provide contrast in cases where radiography and phase-contrast imaging are unsuccessful. Images produced at different scattering vectors highlight different microstructural features within the same sample volume. When used in conjunction with USAXS scans, USAXS imaging provides substantial quantitative and qualitative three-dimensional information on the sizes, shapes and spatial arrangements of the scattering objects. The imaging technique is demonstrated on metal and biological samples.


2021 ◽  
Vol 16 (12) ◽  
pp. C12014
Author(s):  
M. Zoladz ◽  
P. Grybos ◽  
R. Szczygiel

Abstract X-ray imaging of moving objects using line detectors remains the most popular method of object content and structure examination with a typical resolution limited to 0.4–1 mm. Higher resolutions are difficult to obtain as, for the detector in the form of a single pixel row, the narrower the detector is, the lower the image Signal to Noise Ratio (SNR). This is because, for smaller pixel sizes, fewer photons hit the pixel in each time unit for a given radiation intensity. To overcome the trade-off between the SNR and spatial resolution, a two-dimensional sensor, namely a pixel matrix can be used. Imaging of moving objects with a pixel matrix requires time-domain integration (TDI). Straightforward TDI implementation is based on the proper accumulation of images acquired during consecutive phases of an object’s movement. Unfortunately, this method is much more demanding regarding data transfer and processing. Data from the whole pixel matrix instead of a single pixel row must be transferred out of the chip and then processed. The alternative approach is on-chip TDI implementation. It takes advantage of photons acquired by multiple rows (a higher SNR), but generates similar data amount as a single pixel row and does not require data processing out of the chip. In this paper, on-chip TDI is described and verified by using a single photon counting two-dimensional (a matrix of 128 × 192 pixels) CdTe hybrid X-ray detector with the 100 µm × 100 µm pixel size with up to four energy thresholds per pixel. Spatial resolution verification is combined with the Material Discrimination X-ray (MDX) imaging method.


2015 ◽  
Vol 34 (1-2) ◽  
Author(s):  
Tianxi Sun ◽  
Xunliang Ding

AbstractCapillary X-ray optics is versatile, and it can be used with synchrotron radiation source, conventional X-ray source, laser-plasma ultrafast X-ray source, and so forth. Recently, the confocal X-ray technology based on capillary X-ray optics has become popular, and it has been widely used in X-ray fluorescence, X-ray absorption fine structure, X-ray diffraction, small-angle X-ray scattering, X-ray imaging, and X-ray scattering. This confocal X-ray technology has applications in many fields, including environmental monitoring, food science, life science, chemistry, physics, nanomaterials, nondestructive test, security check, and so on.


Author(s):  
Sanjiv S. Samant ◽  
Arun Gopal ◽  
Jinesh Jain ◽  
Junyi Xia ◽  
Frank A. DiBianca
Keyword(s):  
X Ray ◽  

Sign in / Sign up

Export Citation Format

Share Document