scholarly journals Simulation models of current density imaging in studying cardiac states

Author(s):  
Mohammadali Beheshti

Electro-mechanical disorders in cardiac function result in arrhythmias. Due to the non-stationary nature of these arrhythmias and, owing to lethality associated with certain type of arrhythmias, they are challenging to study. Most of the existing studies are limited in that they extract electrical activity from surface intracardiac electrical activity, either through the use of electrical or optical mapping. One way of studying current pathways inside and through biological tissues is by using Magnetic Resonance Imaging (MRI) based Low Frequency Current Density Imaging (LFCDI). For the first time CDI was used to study ex-vivo beating hearts in different cardiac states. It should be said that; this approach involves heavy logistical and procedural complexity, hence, it would be beneficial to adapt existing electrophysiological computer models to investigate and simulate current density maps specific to studying cardiac function. In achieving this, the proposed work presents an approach to model the current density maps in 3D and study the current distributions in different electrophysiological states of the heart. The structural and fiber orientation of the heart used in this study were extracted using MRI-based Diffusion Tensor Imaging. The monodomain and bidomain Aliev-Panfilov electrophysiological models were used for CDI modeling, and the results indicate that different states were distinguishable using range and correlation of simulated current density maps. The obtained results through modeling were corroborated with actual experimental CDI data from porcine hearts. Individually and comparatively, the experimental and simulation results for various states have the same trend in terms of variations (trend correlation coefficients ≥ 0.98) and state correlations (trend correlation coefficients ≥ 0.89). The results also show that the root mean square (RMS) error in average range ratios between bidomain CDI model results and real CDI data is 0.1972 and the RMS error in state correlations between bidomain CDI model results and real CDI data is 0.2833. These results indicate, as expected, the proposed bidomain model simulation of CDI corroborates well with experimental data and can serve as a valuable tool for studying lethal cardiac arrhythmias under different simulation conditions that are otherwise not possible or difficult in a real-world experimental setup.

2021 ◽  
Author(s):  
Mohammadali Beheshti

Electro-mechanical disorders in cardiac function result in arrhythmias. Due to the non-stationary nature of these arrhythmias and, owing to lethality associated with certain type of arrhythmias, they are challenging to study. Most of the existing studies are limited in that they extract electrical activity from surface intracardiac electrical activity, either through the use of electrical or optical mapping. One way of studying current pathways inside and through biological tissues is by using Magnetic Resonance Imaging (MRI) based Low Frequency Current Density Imaging (LFCDI). For the first time CDI was used to study ex-vivo beating hearts in different cardiac states. It should be said that; this approach involves heavy logistical and procedural complexity, hence, it would be beneficial to adapt existing electrophysiological computer models to investigate and simulate current density maps specific to studying cardiac function. In achieving this, the proposed work presents an approach to model the current density maps in 3D and study the current distributions in different electrophysiological states of the heart. The structural and fiber orientation of the heart used in this study were extracted using MRI-based Diffusion Tensor Imaging. The monodomain and bidomain Aliev-Panfilov electrophysiological models were used for CDI modeling, and the results indicate that different states were distinguishable using range and correlation of simulated current density maps. The obtained results through modeling were corroborated with actual experimental CDI data from porcine hearts. Individually and comparatively, the experimental and simulation results for various states have the same trend in terms of variations (trend correlation coefficients ≥ 0.98) and state correlations (trend correlation coefficients ≥ 0.89). The results also show that the root mean square (RMS) error in average range ratios between bidomain CDI model results and real CDI data is 0.1972 and the RMS error in state correlations between bidomain CDI model results and real CDI data is 0.2833. These results indicate, as expected, the proposed bidomain model simulation of CDI corroborates well with experimental data and can serve as a valuable tool for studying lethal cardiac arrhythmias under different simulation conditions that are otherwise not possible or difficult in a real-world experimental setup.


Author(s):  
Bin Chen ◽  
John Moreland

Magnetic resonance diffusion tensor imaging (DTI) is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The water diffusivity inside of biological tissues is characterized by the diffusion tensor, a rank-2 symmetrical 3×3 matrix, which consists of six independent variables. The diffusion tensor contains much information of diffusion anisotropy. However, it is difficult to perceive the characteristics of diffusion tensors by looking at the tensor elements even with the aid of traditional three dimensional visualization techniques. There is a need to fully explore the important characteristics of diffusion tensors in a straightforward and quantitative way. In this study, a virtual reality (VR) based MR DTI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. The VR application will utilize brain image visualization techniques including surface, volume, streamline and streamtube rendering, and use head tracking and wand for navigation and interaction, the application will allow the user to switch between different modalities and visualization techniques, as well making point and choose queries. The main purpose of the application is for basic research and clinical applications with quantitative and accurate measurements to depict the diffusivity or the degree of anisotropy derived from the diffusion tensor.


2012 ◽  
Vol 106 ◽  
pp. 76-79 ◽  
Author(s):  
Jens Müller ◽  
Karsten Bothe ◽  
Sandra Herlufsen ◽  
Helge Hannebauer ◽  
Rafel Ferré ◽  
...  

2016 ◽  
Vol 64 ◽  
pp. 346-351
Author(s):  
M. Kögel ◽  
F. Altmann ◽  
S. Tismer ◽  
S. Brand

2016 ◽  
Vol 127 (1) ◽  
pp. 530-536 ◽  
Author(s):  
Piotr Januszko ◽  
Szymon Niemcewicz ◽  
Tomasz Gajda ◽  
Dorota Wołyńczyk-Gmaj ◽  
Anna Justyna Piotrowska ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document