scholarly journals Life Cycle Assessment Overview And Application: Comparison Of Structural Frame Alternatives For Office Buildings

Author(s):  
Ivan L. Pinto

The objective of this project was to provide an overview of Life Cycle Assessment (LCA) and to demonstrate its application as a tool to provide a scientific comparison of alternative construction options for a commercial building in the Canadian context. The work entailed a quantitative assessment of the embodied environmental impacts of typical office buildings using a steel frame, and a concrete frame alternative (and associated components) in Toronto. Through the use of four assessment strategies, this study has indicated that the steel framed building performs better than the concrete building in most impact indicators, excepting primary energy and eutrophication potential. However, additional buildings should be assessed in order to confirm this finding. Furthermore, it was found that the manufacturing phase represents over 90% of the embodied impacts of the whole building. The study also advises caution when comparing different LCA studies and identifies its difficulties.

2021 ◽  
Author(s):  
Ivan L. Pinto

The objective of this project was to provide an overview of Life Cycle Assessment (LCA) and to demonstrate its application as a tool to provide a scientific comparison of alternative construction options for a commercial building in the Canadian context. The work entailed a quantitative assessment of the embodied environmental impacts of typical office buildings using a steel frame, and a concrete frame alternative (and associated components) in Toronto. Through the use of four assessment strategies, this study has indicated that the steel framed building performs better than the concrete building in most impact indicators, excepting primary energy and eutrophication potential. However, additional buildings should be assessed in order to confirm this finding. Furthermore, it was found that the manufacturing phase represents over 90% of the embodied impacts of the whole building. The study also advises caution when comparing different LCA studies and identifies its difficulties.


2022 ◽  
Vol 305 ◽  
pp. 117878
Author(s):  
Christina Kockel ◽  
Lars Nolting ◽  
Rafael Goldbeck ◽  
Christina Wulf ◽  
Rik W. De Doncker ◽  
...  

2012 ◽  
Vol 7 (3) ◽  
pp. 151-170 ◽  
Author(s):  
Jeremy Faludi ◽  
Michael D. Lepech ◽  
George Loisos

Within this work, life cycle assessment modeling is used to determine top design priorities and quantitatively inform sustainable design decision-making for a prefabricated modular building. A case-study life-cycle assessment was performed for a 5,000 ft2prefabricated commercial building constructed in San Francisco, California, and scenario analysis was run examining the life cycle environmental impacts of various energy and material design substitutions, and a structural design change. Results show that even for a highly energy-efficient modular building, the top design priority is still minimizing operational energy impacts, since this strongly dominates the building life cycle's environmental impacts. However, as an energy-efficient building approaches net zero energy, manufacturing-phase impacts are dominant, and a new set of design priorities emerges. Transportation and end-of-life disposal impacts were of low to negligible importance in both cases.


2013 ◽  
Vol 12 ◽  
pp. 80-86 ◽  
Author(s):  
Mansi Tripathi ◽  
S. Singal

The present study was conducted to evaluate the performance of existing sewage treatment plants (STPs) in Lucknow City of India. Currently, two STPs are operating in Lucknow, i.e., UASB reactor and FAB reactor, with total operating capacity of 345MLD and 56MLD, respectively. Since, the wastewater get mix with the domestic effluent while directing towards the STPs, therefore, the concentration of BOD is relatively very low, and hence the amount of biogas production by the UASB reactor is also reduced than its design value. Two approaches, evaluating the treatability performance and Life-Cycle Assessment (LCA) have been used to determine the plants efficiencies. All the results have been interpreted graphically. The results of this study conclude that the UASB reactor is better than the FAB, however in terms of LCA the FAB seems to be more reliable. Hydro Nepal; Journal of Water, Energy and Environment Vol. 12, 2013, January Page: 80-86DOI: http://dx.doi.org/10.3126/hn.v12i0.9039 Uploaded Date : 10/29/2013


Buildings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 54
Author(s):  
Amir Oladazimi ◽  
Saeed Mansour ◽  
Seyed Abbas Hosseinijou

Given the fact that during the recent years the majority of buildings in Iran have been constructed either on steel or concrete frames, it is essential to investigate the environmental impacts of materials used in such constructions. For this purpose, two multi-story residential buildings in Tehran with a similar function have been considered in this study. One building was constructed with a steel frame and the other was constructed with a concrete frame. Using the life cycle assessment tool, a complete analysis of all the stages of a building’s life cycle from raw material acquisition to demolition and recycling of wastes was carried out. In this research, the environmental impacts included global warming potential in 100 years, acidification, eutrophication potential, human toxicity (cancer and non-cancer effects), resource depletion (water and mineral), climate change, fossil fuel consumption, air acidification and biotoxicity. It could be concluded from the results that the total pollution of the concrete frame in all eleven aforementioned impact factors was almost 219,000 tonnes higher than that of the steel frame. Moreover, based on the results, the concrete frame had poorer performance in all but one impact factor. With respect to global warming potential, the findings indicated there were two types of organic and non-organic gases that had an impact on global warming. Among non-organic emissions, CO2 had the biggest contribution to global warming potential, while among organic emissions, methane was the top contributor. These findings suggest the use of steel frames in the building industry in Iran to prevent further environmental damage; however, in the future, more research studies in this area are needed to completely investigate all aspects of decision on the choice of building frames, including economic and social aspects.


2015 ◽  
Vol 33 (4) ◽  
pp. 231-247 ◽  
Author(s):  
Sandra Roos ◽  
Stefan Posner ◽  
Christina Jönsson ◽  
Greg M. Peters

2020 ◽  
Vol 12 (2) ◽  
pp. 704 ◽  
Author(s):  
Filippo G. Praticò ◽  
Marinella Giunta ◽  
Marina Mistretta ◽  
Teresa Maria Gulotta

Recycled and low-temperature materials are promising solutions to reduce the environmental burden deriving from hot mix asphalts. Despite this, there is lack of studies focusing on the assessment of the life-cycle impacts of these promising technologies. Consequently, this study deals with the life cycle assessment (LCA) of different classes of pavement technologies, based on the use of bituminous mixes (hot mix asphalt and warm mix asphalt) with recycled materials (reclaimed asphalt pavements, crumb rubber, and waste plastics), in the pursuit of assessing energy and environmental impacts. Analysis is developed based on the ISO 14040 series. Different scenarios of pavement production, construction, and maintenance are assessed and compared to a reference case involving the use of common paving materials. For all the considered scenarios, the influence of each life-cycle phase on the overall impacts is assessed to the purpose of identifying the phases and processes which produce the greatest impacts. Results show that material production involves the highest contribution (about 60–70%) in all the examined impact categories. Further, the combined use of warm mix asphalts and recycled materials in bituminous mixtures entails lower energy consumption and environmental impacts due to a reduction of virgin bitumen and aggregate consumption, which involves a decrease in the consumption of primary energy and raw materials, and reduced impacts for disposal. LCA results demonstrate that this methodology is able to help set up strategies for eco-design in the pavement sector.


Author(s):  
Rebekah Yang ◽  
Imad L. Al-Qadi ◽  
Hasan Ozer

The use of life-cycle assessment (LCA) to assess the environmental impacts of pavement systems has become more prevalent in recent years. When performing an LCA study, a series of methodological choices must be defined. As these decisions can change from study to study, it is important to understand the significance or insignificance of the methodological choices relevant to pavement LCA. This paper evaluated the sensitivity of five choices commonly made in pavement LCA; cut-off criteria, end-of-life (EOL) allocation, asphalt binder allocation, traffic growth, and type of energy reported. Eight case studies and four environmental indicators, that is, global warming potential, primary energy as fuel, total primary energy, and a unitless single score, were considered in the sensitivity analyses. Varying the cut-off criteria and asphalt binder allocation only had a significant impact on the environmental indicators when the use stage of the life-cycle is excluded and only the materials and construction, maintenance and rehabilitation, and EOL stages are considered. Using different EOL allocations, traffic growths, and types of energy reported had significant effects on the overall life-cycle results. Common methodological choices made in a pavement LCA are expected to have an impact on LCA results and subsequent interpretation, with the magnitude of the impact dependent on the scope of the analysis.


Sign in / Sign up

Export Citation Format

Share Document