scholarly journals Detection and antimicrobial activity of immobilized quaternary ammonium antimicrobial monolayers on porous and non-porous surfaces.

Author(s):  
Lukasz Porosa

This research describes the development of novel, environmentally-friendly, non-releasing contact-active thin film coatings by immobilizing the quaternary ammonium (QA) antimicrobial group on a multitude of surfaces. Various chemical anchors based on organosilanes (i.e. textiles, silica, oxide surfaces), organosulfur comprising of thiol (noble metals), organophosphorus comprising of phosphonate and phosphonic acid (i.e. stainless steel (SS), titanium (Ti)), and catechol (Ti, SS) monolayers are employed to attach the QA antimicrobial onto metal surfaces, while benzophenone photoactive crosslinkers containing QA groups are used to coat plastic surfaces (C-H surfaces, i.e. polyethylene (PE), silicone (Si), polyvinylchloride (PVC)). Surfaces treated with covalently attached antimicrobial coatings function by killing microbes on contact, preventing surface attachment, colonization and contamination without releasing the chemical into the environment. The advantages of this method of delivery of the antimicrobial include a lower cost of application, decreased antimicrobial resistance, lower toxicity and increased environmental safety. Samples prepared by an overnight immersion in an ethanolic solution of phosphorus containing quats followed by an overnight cure at 100oC showed the highest antimicrobial reduction versus electrospray application and no curing. Short chain phosphonic acid quats and the organosilane quat were inactive on titanium. Antimicrobial activity of long chain phosphonate quats prepared by dip coating and annealing on metal surfaces (Ti, SS, Al) was tested by growth enumeration in the dry state utilizing methods developed in the Wolfaardt lab. All samples showed a 100% reduction (106 cells) of viable Salmonella, Arthrobacter, S.aureus and P.aeroguinosa after 2 hrs of contact time and maintained their activity over 24 hrs versus the uncoated controls. To demonstrate the phosphonate quats were truly immobilized, Ti samples from the first trial were washed in distilled H2O, dried, and re-innoculated with 106 Anthrobacter colonies. No visible colonies of Anthrobacter remained after 2 hrs of contact time with the Ti surfaces indicating a contact killing mechanism at play.

2021 ◽  
Author(s):  
Lukasz Porosa

This research describes the development of novel, environmentally-friendly, non-releasing contact-active thin film coatings by immobilizing the quaternary ammonium (QA) antimicrobial group on a multitude of surfaces. Various chemical anchors based on organosilanes (i.e. textiles, silica, oxide surfaces), organosulfur comprising of thiol (noble metals), organophosphorus comprising of phosphonate and phosphonic acid (i.e. stainless steel (SS), titanium (Ti)), and catechol (Ti, SS) monolayers are employed to attach the QA antimicrobial onto metal surfaces, while benzophenone photoactive crosslinkers containing QA groups are used to coat plastic surfaces (C-H surfaces, i.e. polyethylene (PE), silicone (Si), polyvinylchloride (PVC)). Surfaces treated with covalently attached antimicrobial coatings function by killing microbes on contact, preventing surface attachment, colonization and contamination without releasing the chemical into the environment. The advantages of this method of delivery of the antimicrobial include a lower cost of application, decreased antimicrobial resistance, lower toxicity and increased environmental safety. Samples prepared by an overnight immersion in an ethanolic solution of phosphorus containing quats followed by an overnight cure at 100oC showed the highest antimicrobial reduction versus electrospray application and no curing. Short chain phosphonic acid quats and the organosilane quat were inactive on titanium. Antimicrobial activity of long chain phosphonate quats prepared by dip coating and annealing on metal surfaces (Ti, SS, Al) was tested by growth enumeration in the dry state utilizing methods developed in the Wolfaardt lab. All samples showed a 100% reduction (106 cells) of viable Salmonella, Arthrobacter, S.aureus and P.aeroguinosa after 2 hrs of contact time and maintained their activity over 24 hrs versus the uncoated controls. To demonstrate the phosphonate quats were truly immobilized, Ti samples from the first trial were washed in distilled H2O, dried, and re-innoculated with 106 Anthrobacter colonies. No visible colonies of Anthrobacter remained after 2 hrs of contact time with the Ti surfaces indicating a contact killing mechanism at play.


2021 ◽  
Author(s):  
Kamlesh Mistry

A series of novel sulfonamide based quaternary ammonium (QUAT’s) antimicrobials containing a variety of chemical anchors R-SO2-NH-(CH2)3-N(CH3)2-(CH2)3-Y (where R = alkyl or aryl and Y = organosilane (Si(OMe)3), organophosphorus (P(O)(OR1)) and benzophenone (-OC6H4-C(O)-C6H5)) were used to immobilize them on different substrates. Sulfonamide organosilane QUAT’s were immobilized on to textiles substrates, whereas benzophenone QUAT’s were used to exclusively coat plastic surfaces (polyethylene (PE), and polyvinylchloride (PVC)), and organophosphorus QUAT’s were prepared for testing on metal surfaces (stainless steel). The covalently attached antimicrobial coatings were found to kill gram +ve and -ve bacteria on contact, hindering their attachment and colonization without any leachate. The partially water soluble sulfonamide QUAT’s presented are readily prepared, easy to apply and are relatively inexpensive. Textile samples were prepared by immersion in a MeOH:H2O (30:70) solution of organosilane QUAT’s followed by curing/drying at room temperature for 2 – 24 hours. Plastic samples were prepared by electrospraying an EtOH:H2O (10:90) solution containing benzophenone QUAT’s followed by UV curing using for 2 – 5 minutes. All samples showed a 100% reduction (107– 106 cells) of viable Arthrobacter, S. aureus, and E.coli after 3 hours of contact time and maintained their activity over 24 hours versus the control (untreated) samples.


2021 ◽  
Author(s):  
Kamlesh Mistry

A series of novel sulfonamide based quaternary ammonium (QUAT’s) antimicrobials containing a variety of chemical anchors R-SO2-NH-(CH2)3-N(CH3)2-(CH2)3-Y (where R = alkyl or aryl and Y = organosilane (Si(OMe)3), organophosphorus (P(O)(OR1)) and benzophenone (-OC6H4-C(O)-C6H5)) were used to immobilize them on different substrates. Sulfonamide organosilane QUAT’s were immobilized on to textiles substrates, whereas benzophenone QUAT’s were used to exclusively coat plastic surfaces (polyethylene (PE), and polyvinylchloride (PVC)), and organophosphorus QUAT’s were prepared for testing on metal surfaces (stainless steel). The covalently attached antimicrobial coatings were found to kill gram +ve and -ve bacteria on contact, hindering their attachment and colonization without any leachate. The partially water soluble sulfonamide QUAT’s presented are readily prepared, easy to apply and are relatively inexpensive. Textile samples were prepared by immersion in a MeOH:H2O (30:70) solution of organosilane QUAT’s followed by curing/drying at room temperature for 2 – 24 hours. Plastic samples were prepared by electrospraying an EtOH:H2O (10:90) solution containing benzophenone QUAT’s followed by UV curing using for 2 – 5 minutes. All samples showed a 100% reduction (107– 106 cells) of viable Arthrobacter, S. aureus, and E.coli after 3 hours of contact time and maintained their activity over 24 hours versus the control (untreated) samples.


Author(s):  
Tomasz K. Olszewski ◽  
Anna Brol

An effective protocol for quaternization of simple 1-aminoalkylphosphonic acids under basic conditions and using Me2SO4 as convenient alkylating agent is reported. In the course of reaction phosphonic acid quaternary ammonium...


Tetrahedron ◽  
2016 ◽  
Vol 72 (25) ◽  
pp. 3559-3566 ◽  
Author(s):  
Kevin P.C. Minbiole ◽  
Megan C. Jennings ◽  
Laura E. Ator ◽  
Jacob W. Black ◽  
Melissa C. Grenier ◽  
...  

1984 ◽  
Vol 47 (11) ◽  
pp. 841-847 ◽  
Author(s):  
P. GÉLINAS ◽  
J. GOULET ◽  
G. M. TASTAYRE ◽  
G. A. PICARD

The combined influence of temperature (4, 20, 37 and 50°C) and contact time (10, 20 and 30 min) on the efficacy of eight commercial disinfectants was evaluated by the Association of Official Analytical Chemists use-dilution method. An increase of temperature greatly enhanced the activity of all tested solutions, particularly glutaraldehyde, chlorhexidine acetate and the amphoteric surfactant, whereas contact time mainly enhanced the efficacy of sodium hypochlorite, the quaternary ammonium compound and the amphoteric surfactant. Temperature and contact time influenced the activity profile of the disinfectants tested, with a maximum efficacy near the optimum growth temperature (37°C) of the test organism (Pseudomonas aeruginosa ATCC 15442). This organism was highly resistant to the amphoteric surfactant as well as to the two quaternary ammonium compounds. Classification of disinfectants is proposed on the basis of their mode of action, temperature dependence and activation energies, heat and light stability, and tolerance to organic matter.


2003 ◽  
Vol 66 (1) ◽  
pp. 115-119 ◽  
Author(s):  
J. JEAN ◽  
J.-F. VACHON ◽  
O. MORONI ◽  
A. DARVEAU ◽  
I. KUKAVICA-IBRULJ ◽  
...  

Six commercial disinfectants were tested for their efficacy in inactivating hepatitis A virus in solution or attached to agri-food surfaces. Disinfectant I contains 10% quaternary ammonium plus 5% glutaraldehyde;disinfectant II contains 12% sodium hypochlorite; disinfectant III contains 2.9% dodecylbenzene sulfonic acid plus 16% phosphoric acid; disinfectant IV contains 10% quaternary ammonium; disinfectant V contains 2% iodide; and disinfectant VI contains 2% stabilized chlorine dioxide. Among these, disinfectants I and II were shown to be the most effective in inactivating hepatitis A virus in solution. The efficacy of these disinfectants was further tested against hepatitis A virus attached to common agri-food surfaces, including polyvinyl chlorine, high-density polyethylene, aluminum, stainless steel, and copper. Disinfectant II was shown to be the most effective, with a maximum inactivation level of about 3 log10. The inactivation efficacy was shown to be affected by the concentration of the active ingredient, the contact time between the disinfectant and the contaminated surfaces, and the incubation temperature. In general, hepatitis A virus was shown to be highly resistant to most disinfectants tested, and high concentrations of active ingredient were needed to achieve acceptable inactivation levels.


Author(s):  
Łukasz Pałkowski ◽  
Jerzy Błaszczyński ◽  
Jerzy Krysiński ◽  
Roman Słowiński ◽  
Andrzej Skrzypczak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document