scholarly journals A Local-Feedback-Global-Cascade Model for Hierarchical l Heart Rate Variability in Healthy Humans

2021 ◽  
Author(s):  
Xiuzhong Gao

A broad view on Heart Rate Variability (HRV) study is made and the hierarchical structure is shown in Local-Feedback-Global-Cascade (LFGC) model, which is built to explore the role of reflex feedback. This feedback, which integrates additive and multiple functionalities in multifractal cascade models, functions on the She-Waymire (SW) form of the hierarchical structure so that the concept of defect dynamics can be applied to LFGC model. The experimental evidence verified the existence of the hierarchical structure and showed discrete scale invariance in data supported the additive feedback law, which may exist in the cardiovascular system in harmony with this dynamical cascade model.

2021 ◽  
Author(s):  
Xiuzhong Gao

A broad view on Heart Rate Variability (HRV) study is made and the hierarchical structure is shown in Local-Feedback-Global-Cascade (LFGC) model, which is built to explore the role of reflex feedback. This feedback, which integrates additive and multiple functionalities in multifractal cascade models, functions on the She-Waymire (SW) form of the hierarchical structure so that the concept of defect dynamics can be applied to LFGC model. The experimental evidence verified the existence of the hierarchical structure and showed discrete scale invariance in data supported the additive feedback law, which may exist in the cardiovascular system in harmony with this dynamical cascade model.


2005 ◽  
Vol 16 (03) ◽  
pp. 465-478 ◽  
Author(s):  
D. C. LIN

Evidence of discrete scale invariance (DSI) in daytime healthy heart rate variability (HRV) is presented based on the log-periodic power law scaling of the heart beat interval increment. Our analysis suggests multiple DSI groups and a dynamic cascading process. A cascade model is presented to simulate such a property.


2020 ◽  
Vol 25 (2) ◽  
pp. 83-98
Author(s):  
Stacey L. Parker ◽  
Sabine Sonnentag ◽  
Nerina L. Jimmieson ◽  
Cameron J. Newton

1996 ◽  
Vol 27 (2) ◽  
pp. 398-399
Author(s):  
Tohru Kaji ◽  
Tetsuro Kohya ◽  
Fumishi Tomita ◽  
Tomohide Ono ◽  
Akira Kitabatake

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Reuben Howden ◽  
Eva Gougian ◽  
Marcus Lawrence ◽  
Samantha Cividanes ◽  
Wesley Gladwell ◽  
...  

Nrf2protects the lung from adverse responses to oxidants, including 100% oxygen (hyperoxia) and airborne pollutants like particulate matter (PM) exposure, but the role ofNrf2on heart rate (HR) and heart rate variability (HRV) responses is not known. We hypothesized that genetic disruption ofNrf2would exacerbate murine HR and HRV responses to severe hyperoxia or moderate PM exposures.Nrf2-/-andNrf2+/+mice were instrumented for continuous ECG recording to calculate HR and HRV (low frequency (LF), high frequency (HF), and total power (TP)). Mice were then either exposed to hyperoxia for up to 72 hrs or aspirated with ultrafine PM (UF-PM). Compared to respective controls, UF-PM induced significantly greater effects on HR (P<0.001) and HF HRV (P<0.001) inNrf2-/-mice compared toNrf2+/+mice.Nrf2-/-mice tolerated hyperoxia significantly less thanNrf2+/+mice (~22 hrs;P<0.001). Reductions in HR, LF, HF, and TP HRV were also significantly greater inNrf2-/-compared toNrf2+/+mice (P<0.01). Results demonstrate thatNrf2deletion increases susceptibility to change in HR and HRV responses to environmental stressors and suggest potential therapeutic strategies to prevent cardiovascular alterations.


2019 ◽  
Vol 247 ◽  
pp. 73-80 ◽  
Author(s):  
Adrienne O'Neil ◽  
C. Barr Taylor ◽  
David L. Hare ◽  
Emma Thomas ◽  
Samia R. Toukhsati ◽  
...  

2004 ◽  
Vol 6 (2) ◽  
pp. 181-185 ◽  
Author(s):  
Laurent Fauchier ◽  
Dominique Babuty ◽  
Alexandre Melin ◽  
Pierre Bonnet ◽  
Pierre Cosnay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document