scholarly journals Experimental measurement of Soret coefficient and numerical study on effect of g-jitter in liquid mixtures

2021 ◽  
Author(s):  
Pouyan Ezzatian

Experimental measurement of Soret coefficient and numerical study on effect of g-jitter in liquid mixtures

2021 ◽  
Author(s):  
Pouyan Ezzatian

Experimental measurement of Soret coefficient and numerical study on effect of g-jitter in liquid mixtures


2005 ◽  
Vol 73 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Jean K. Platten

In the first part of the paper, we recall what the Soret effect is, together with its applications in science and industry. We emphasize the need to have a reliable data base for the Soret coefficient. Next we review the different techniques to measure the Soret coefficient (elementary Soret cell, beam deflection technique, thermal diffusion forced Rayleigh scattering technique, convective coupling and, in particular, the onset of convection in horizontal layers and the thermogravitational method). Results are provided for several systems, with both negative and positive Soret coefficients, and comparison between several laboratories are made for the same systems. We end with “benchmark” values of the Soret coefficient for some organic liquid mixtures of interest in the oil industry and to which all future new techniques should refer before gaining confidence. We conclude that correct values of the Soret coefficient can be obtained in earth conditions and we deny the need to go to microgravity.


1996 ◽  
Vol 104 (17) ◽  
pp. 6881-6892 ◽  
Author(s):  
K. J. Zhang ◽  
M. E. Briggs ◽  
R. W. Gammon ◽  
J. V. Sengers

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Gorazd Cvetič ◽  
C. S. Kim ◽  
Donghun Lee ◽  
Dibyakrupa Sahoo

Abstract The disagreement between the standard model prediction and the experimental measurement of muon anomalous magnetic moment can be alleviated by invoking an additional particle which is either a vector boson (X1) or a scalar (X0). This new particle, with the mass mX ≲ 2mμ, can be searched for in the decay J/ψ → μ−μ+X, where X is missing. Our numerical study shows that the search is quite feasible at the BESIII experiment in the parameter space allowed by muon g − 2 measurements.


2012 ◽  
Vol 550-553 ◽  
pp. 3194-3200
Author(s):  
Guang Cai Gao ◽  
Jian Jun Wang ◽  
You Hai Jin

The gas flow field in the swirl tube was studied by experimental measurement and numerical simulation. The results show that the simulation results based on the Reynolds stress turbulent model is in good agreement with the measured results probed by the five orifice Pitot-tube. Meantime, it is analyzed that there is short cut stream at the end of the exit tube, and at the dust discharge jaws, the particles are prone to be re-entrained from the hopper. All results above provide a base for further research on the optimization of the structure and the improvement of the separation performance of the swirl tube.


1974 ◽  
Vol 29 (12) ◽  
pp. 1915-1916 ◽  
Author(s):  
P. Poty ◽  
J. C. Legros ◽  
G. Thomaes

In this paper we present measurements of the Soret coefficient (D'/D) by means of a flowing cell technique for disulfide- 3 methylpentane and for the three associated solutions: carbon tetrachloride-ethanol, carbon tetrachloride-isopropanol and water-isopropanol.


2021 ◽  
Author(s):  
Md A. Rahman

Measurement of diffusion coefficients is essential for simulation and prediction of oil reservoirs. Recently, a new experimental set-up has been built at Ryerson University to measure the transport coefficient of transparent liquid mixtures. Laser-based optical digital interferometry techniques using a Mach-Zehnder Interferometer have been used for measuring the diffusion coefficients. This method is non-intrusive, highly accurate, and can provide a detailed 2-D visualization of temperature and concentration fields. Five binary liquid mixtures of Decane (C10H22) - Isobutylbenzene (IBB), Decane (C10H22) - 1,2,3,4 Tetrahydronaphthalene (THN), Dodecane (C12H26) - Isobutylbenzene (IBB), Dodecane (C12H26) - 1,2,3,4 Tetrahydronaphthalene (THN) and Isobutylbenzene (IBB) - 1,2,3,4 Tetrahydronaphtha-lene (THN) have been selected. The mixtures have been prepared from pure C10H22, C12H26, IBB and THN for 50% mass fractions. These five binary mixtures are representatives of binary interactions between alkane, one-ring aromatic and two-ring aromatic hydrocarbons. The thermal designs of the diffusion cell, as well as the data analyze method, have been improved. A comparison of experimental data with theoretical analysis based on the Firoozabadi model for measuring thermodiffusion coefficient and Peng-Robinson equation of state (PR-EOS) for measuring the physical properties have been conducted. Experimental results showed a maximum deviation of less than 2% for IBB- C12H26 and THN-IBB and 9% for THN-C12H26 from the available benchmark results. Accurate knowledge of refractive index is highly relevant to correlations with concentration, temperature, wavelength and pressure in non-intrusive experiments carried out with transparent fluids. It can be used for the identification and characterization of pure materials and for the measurement of concentration of multi-component mixtures. In this current scope, refractive indices of five binary mixtures C10H22-IBB, C10H22-THN, C12H26-IBB, C12H26-THN and IBB-THN have been measured using both the Mach-Zehnder Interferometer and a multi-wavelength Abbemat refractometer. Temperature and concentration coefficients of refractive indices, or so-called contrast factors, as well as their individual correlation to calculate refractive indices have been presented for a wide range of visible spectrums such as 436 nm to 657 nm. Comparison with available literature and mixing rules shows that new correlations can predict the experimental data with deviations of less than 0.001.


Sign in / Sign up

Export Citation Format

Share Document